IDEAS home Printed from https://ideas.repec.org/h/eme/aecozz/s0731-905320160000036026.html

A Class of Nonparametric Density Derivative Estimators Based on Global Lipschitz Conditions

In: Essays in Honor of Aman Ullah

Author

Listed:
  • Kairat Mynbaev
  • Carlos Martins-Filho
  • Aziza Aipenova

Abstract

Estimators for derivatives associated with a density function can be useful in identifying its modes and inflection points. In addition, these estimators play an important role in plug-in methods associated with bandwidth selection in nonparametric kernel density estimation. In this paper, we extend the nonparametric class of density estimators proposed by Mynbaev and Martins-Filho (2010) to the estimation ofm-order density derivatives. Contrary to some existing derivative estimators, the estimators in our proposed class have a full asymptotic characterization, including uniform consistency and asymptotic normality. An expression for the bandwidth that minimizes an asymptotic approximation for the estimators’ integrated squared error is provided. A Monte Carlo study sheds light on the finite sample performance of our estimators and contrasts it with that of density derivative estimators based on the classical Rosenblatt–Parzen approach.

Suggested Citation

  • Kairat Mynbaev & Carlos Martins-Filho & Aziza Aipenova, 2016. "A Class of Nonparametric Density Derivative Estimators Based on Global Lipschitz Conditions," Advances in Econometrics, in: Essays in Honor of Aman Ullah, volume 36, pages 591-615, Emerald Group Publishing Limited.
  • Handle: RePEc:eme:aecozz:s0731-905320160000036026
    DOI: 10.1108/S0731-905320160000036026
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/S0731-905320160000036026/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: no

    File URL: https://www.emerald.com/insight/content/doi/10.1108/S0731-905320160000036026/full/epub?utm_source=repec&utm_medium=feed&utm_campaign=repec&title=10.1108/S0731-905320160000036026
    Download Restriction: no

    File URL: https://www.emerald.com/insight/content/doi/10.1108/S0731-905320160000036026/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: no

    File URL: https://libkey.io/10.1108/S0731-905320160000036026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kairat Mynbaev & Carlos Martins-Filho, 2019. "Unified estimation of densities on bounded and unbounded domains," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 853-887, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:aecozz:s0731-905320160000036026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.