IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v94y2014icp106-112.html
   My bibliography  Save this article

Improving bias in kernel density estimation

Author

Listed:
  • Mynbaev, Kairat T.
  • Nadarajah, Saralees
  • Withers, Christopher S.
  • Aipenova, Aziza S.

Abstract

For order q kernel density estimators we show that the constant bq in bias=bqhq+o(hq) can be made arbitrarily small, while keeping the variance bounded. A data-based selection of bq is presented and Monte Carlo simulations illustrate the advantages of the method.

Suggested Citation

  • Mynbaev, Kairat T. & Nadarajah, Saralees & Withers, Christopher S. & Aipenova, Aziza S., 2014. "Improving bias in kernel density estimation," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 106-112.
  • Handle: RePEc:eee:stapro:v:94:y:2014:i:c:p:106-112
    DOI: 10.1016/j.spl.2014.07.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715214002521
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lejeune, Michel & Sarda, Pascal, 1992. "Smooth estimators of distribution and density functions," Computational Statistics & Data Analysis, Elsevier, vol. 14(4), pages 457-471, November.
    2. Kairat Mynbaev & Carlos Martins-Filho, 2010. "Bias reduction in kernel density estimation via Lipschitz condition," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(2), pages 219-235.
    3. Christopher Withers & Saralees Nadarajah, 2013. "Density estimates of low bias," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(3), pages 357-379, April.
    4. Fan, Jianqing & Hu, Tien-Chung, 1992. "Bias correction and higher order kernel functions," Statistics & Probability Letters, Elsevier, vol. 13(3), pages 235-243, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mynbaev, Kairat & Martins-Filho, Carlos, 2017. "Reducing bias in nonparametric density estimation via bandwidth dependent kernels: L1 view," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 17-22.

    More about this item

    Keywords

    Density estimation; Bias; Higher order kernel;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:94:y:2014:i:c:p:106-112. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.