IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/75909.html
   My bibliography  Save this paper

A class of nonparametric density derivative estimators based on global Lipschitz conditions

Author

Listed:
  • Mynbaev, Kairat
  • Martins-Filho, Carlos
  • Aipenova, Aziza

Abstract

Estimators for derivatives associated with a density function can be useful in identifying its modes and inflection points. In addition, these estimators play an important role in plug-in methods associated with bandwidth selection in nonparametric kernel density estimation. In this paper we extend the nonparametric class of density estimators proposed by Mynbaev and Martins Filho (2010) to the estimation of $m$-order density derivatives. Contrary to some existing derivative estimators, the estimators in our proposed class have a full asymptotic characterization, including uniform consistency and asymptotic normality. An expression for the bandwidth that minimizes an asymptotic approximation for the estimators' integrated squared error is provided. A Monte Carlo study sheds light on the finite sample performance of our estimators and contrasts it with that of density derivative estimators based on the classical Rosenblatt-Parzen approach.

Suggested Citation

  • Mynbaev, Kairat & Martins-Filho, Carlos & Aipenova, Aziza, 2015. "A class of nonparametric density derivative estimators based on global Lipschitz conditions," MPRA Paper 75909, University Library of Munich, Germany, revised 2014.
  • Handle: RePEc:pra:mprapa:75909
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/75909/1/MPRA_paper_75909.pdf
    File Function: original version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kairat Mynbaev & Carlos Martins-Filho, 2010. "Bias reduction in kernel density estimation via Lipschitz condition," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(2), pages 219-235.
    2. Henderson, Daniel J. & Parmeter, Christopher F., 2012. "Canonical higher-order kernels for density derivative estimation," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1383-1387.
    3. Singh, Radhey S., 1987. "Mise of kernel estimates of a density and its derivatives," Statistics & Probability Letters, Elsevier, vol. 5(2), pages 153-159, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kairat Mynbaev & Carlos Martins-Filho, 2019. "Unified estimation of densities on bounded and unbounded domains," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 853-887, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martins-Filho, Carlos & Ziegelmann, Flávio Augusto & Torrent, Hudson da Silva, 2013. "Local Exponential Frontier Estimation," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 33(2), November.
    2. Henderson, Daniel J. & Parmeter, Christopher F., 2012. "Normal reference bandwidths for the general order, multivariate kernel density derivative estimator," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2198-2205.
    3. Henderson, Daniel J. & Parmeter, Christopher F., 2012. "Canonical higher-order kernels for density derivative estimation," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1383-1387.
    4. Duong, Tarn & Cowling, Arianna & Koch, Inge & Wand, M.P., 2008. "Feature significance for multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4225-4242, May.
    5. Mynbaev, Kairat T. & Nadarajah, Saralees & Withers, Christopher S. & Aipenova, Aziza S., 2014. "Improving bias in kernel density estimation," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 106-112.
    6. Christopher Withers & Saralees Nadarajah, 2013. "Density estimates of low bias," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(3), pages 357-379, April.
    7. Mynbaev, Kairat & Martins-Filho, Carlos, 2015. "Consistency and asymptotic normality for a nonparametric prediction under measurement errors," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 166-188.
    8. Kairat Mynbaev & Carlos Martins-Filho, 2019. "Unified estimation of densities on bounded and unbounded domains," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 853-887, August.
    9. Paul Deheuvels & David Mason, 2004. "General Asymptotic Confidence Bands Based on Kernel-type Function Estimators," Statistical Inference for Stochastic Processes, Springer, vol. 7(3), pages 225-277, October.

    More about this item

    Keywords

    nonparametric derivative estimation; Lipschitz conditions;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:75909. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.