IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v82y2022ipas0038012122000039.html
   My bibliography  Save this article

Modelling the persistence of Covid-19 positivity rate in Italy

Author

Listed:
  • Naimoli, Antonio

Abstract

The current Covid-19 pandemic is severely affecting public health and global economies. In this context, accurately predicting its evolution is essential for planning and providing resources effectively. This paper aims at capturing the dynamics of the positivity rate (PPR) of the novel coronavirus using the Heterogeneous Autoregressive (HAR) model. The use of this model is motivated by two main empirical features arising from the analysis of PPR time series: the changing long-run level and the persistent autocorrelation structure. Compared to the most frequently used Autoregressive Integrated Moving Average (ARIMA) models, the HAR is able to reproduce the strong persistence of the data by using components aggregated at different interval sizes, remaining parsimonious and easy to estimate. The relative merits of the proposed approach are assessed by performing a forecasting study on the Italian dataset. As a robustness check, the analysis of the positivity rate is also conducted by considering the case of the United States. The ability of the HAR-type models to predict the PPR at different horizons is evaluated through several loss functions, comparing the results with those generated by ARIMA models. The Model Confidence Set is used to test the significance of differences in the predictive performances of the models under analysis. Our findings suggest that HAR-type models significantly outperform ARIMA specifications in terms of forecasting accuracy. We also find that the PPR could represent an important metric for monitoring the evolution of hospitalizations, as the peak of patients in intensive care units occurs within 12–16 days after the peak in the positivity rate. This can help governments in planning socio-economic and health policies in advance.

Suggested Citation

  • Naimoli, Antonio, 2022. "Modelling the persistence of Covid-19 positivity rate in Italy," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
  • Handle: RePEc:eee:soceps:v:82:y:2022:i:pa:s0038012122000039
    DOI: 10.1016/j.seps.2022.101225
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012122000039
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2022.101225?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Dayong & Hu, Min & Ji, Qiang, 2020. "Financial markets under the global pandemic of COVID-19," Finance Research Letters, Elsevier, vol. 36(C).
    2. Francesco Audrino & Simon D. Knaus, 2016. "Lassoing the HAR Model: A Model Selection Perspective on Realized Volatility Dynamics," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1485-1521, December.
    3. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    4. Bloise, Francesco & Tancioni, Massimiliano, 2021. "Predicting the spread of COVID-19 in Italy using machine learning: Do socio-economic factors matter?," Structural Change and Economic Dynamics, Elsevier, vol. 56(C), pages 310-329.
    5. Enrico Bertuzzo & Lorenzo Mari & Damiano Pasetto & Stefano Miccoli & Renato Casagrandi & Marino Gatto & Andrea Rinaldo, 2020. "The geography of COVID-19 spread in Italy and implications for the relaxation of confinement measures," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    6. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    7. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    8. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    9. Audrino Francesco & Huang Chen & Okhrin Ostap, 2019. "Flexible HAR model for realized volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 23(3), pages 1-22, June.
    10. Yan-Ling Zheng & Li-Ping Zhang & Xue-Liang Zhang & Kai Wang & Yu-Jian Zheng, 2015. "Forecast Model Analysis for the Morbidity of Tuberculosis in Xinjiang, China," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-13, March.
    11. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    12. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    13. Kristin van Barneveld & Michael Quinlan & Peter Kriesler & Anne Junor & Fran Baum & Anis Chowdhury & PN (Raja) Junankar & Stephen Clibborn & Frances Flanagan & Chris F Wright & Sharon Friel & Joseph H, 2020. "The COVID-19 pandemic: Lessons on building more equal and sustainable societies," The Economic and Labour Relations Review, , vol. 31(2), pages 133-157, June.
    14. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    15. Verikios, George, 2020. "The dynamic effects of infectious disease outbreaks: the case of pandemic influenza and human coronavirus," MPRA Paper 104434, University Library of Munich, Germany.
    16. B. James Deaton & Brady J. Deaton, 2020. "Food security and Canada's agricultural system challenged by COVID‐19," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 68(2), pages 143-149, June.
    17. Ehlert, Andree, 2021. "The socio-economic determinants of COVID-19: A spatial analysis of German county level data," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    18. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    19. Hasin Md. Muhtasim Taqi & Humaira Nafisa Ahmed & Sumit Paul & Maryam Garshasbi & Syed Mithun Ali & Golam Kabir & Sanjoy Kumar Paul, 2020. "Strategies to Manage the Impacts of the COVID-19 Pandemic in the Supply Chain: Implications for Improving Economic and Social Sustainability," Sustainability, MDPI, vol. 12(22), pages 1-25, November.
    20. Dmitry Ivanov & Ajay Das, 2020. "Coronavirus (COVID-19/SARS-CoV-2) and supply chain resilience: a research note," International Journal of Integrated Supply Management, Inderscience Enterprises Ltd, vol. 13(1), pages 90-102.
    21. Klose Jens & Tillmann Peter, 2021. "COVID-19 and Financial Markets: A Panel Analysis for European Countries," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 241(3), pages 297-347, June.
    22. Richard S. Gray, 2020. "Agriculture, transportation, and the COVID‐19 crisis," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 68(2), pages 239-243, June.
    23. Sanjoy Kumar Paul & Priyabrata Chowdhury, 2020. "Strategies for Managing the Impacts of Disruptions During COVID-19: an Example of Toilet Paper," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 21(3), pages 283-293, September.
    24. Beniamino Murgante & Giuseppe Borruso & Ginevra Balletto & Paolo Castiglia & Marco Dettori, 2020. "Why Italy First? Health, Geographical and Planning Aspects of the COVID-19 Outbreak," Sustainability, MDPI, vol. 12(12), pages 1-44, June.
    25. Dmitry Ivanov & Alexandre Dolgui, 2020. "Viability of intertwined supply networks: extending the supply chain resilience angles towards survivability. A position paper motivated by COVID-19 outbreak," International Journal of Production Research, Taylor & Francis Journals, vol. 58(10), pages 2904-2915, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soltanisehat, Leili & González, Andrés D. & Barker, Kash, 2023. "Modeling social, economic, and health perspectives for optimal pandemic policy decision-making," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    2. Gong, Jiangyue & Gujjula, Krishna Reddy & Ntaimo, Lewis, 2023. "An integrated chance constraints approach for optimal vaccination strategies under uncertainty for COVID-19," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Min & Lee, Chien-Chiang, 2021. "Capturing the dynamics of the China crude oil futures: Markov switching, co-movement, and volatility forecasting," Energy Economics, Elsevier, vol. 103(C).
    2. Ding, Yi & Kambouroudis, Dimos & McMillan, David G., 2021. "Forecasting realised volatility: Does the LASSO approach outperform HAR?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    3. Chowdhury, Priyabrata & Paul, Sanjoy Kumar & Kaisar, Shahriar & Moktadir, Md. Abdul, 2021. "COVID-19 pandemic related supply chain studies: A systematic review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 148(C).
    4. Zhang, Yaojie & Wei, Yu & Zhang, Yi & Jin, Daxiang, 2019. "Forecasting oil price volatility: Forecast combination versus shrinkage method," Energy Economics, Elsevier, vol. 80(C), pages 423-433.
    5. Wilms, Ines & Rombouts, Jeroen & Croux, Christophe, 2021. "Multivariate volatility forecasts for stock market indices," International Journal of Forecasting, Elsevier, vol. 37(2), pages 484-499.
    6. Tomáš Plíhal, 2021. "Scheduled macroeconomic news announcements and Forex volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1379-1397, December.
    7. Niu, Zibo & Liu, Yuanyuan & Gao, Wang & Zhang, Hongwei, 2021. "The role of coronavirus news in the volatility forecasting of crude oil futures markets: Evidence from China," Resources Policy, Elsevier, vol. 73(C).
    8. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    9. Niu, Zibo & Ma, Feng & Zhang, Hongwei, 2022. "The role of uncertainty measures in volatility forecasting of the crude oil futures market before and during the COVID-19 pandemic," Energy Economics, Elsevier, vol. 112(C).
    10. Yao, Xingzhi & Izzeldin, Marwan & Li, Zhenxiong, 2019. "A novel cluster HAR-type model for forecasting realized volatility," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1318-1331.
    11. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
    12. Harry-Paul Vander Elst, 2015. "FloGARCH: Realizing Long Memory and Asymmetries in Returns Valitility," Working Papers ECARES ECARES 2015-12, ULB -- Universite Libre de Bruxelles.
    13. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    14. Mei, Dexiang & Ma, Feng & Liao, Yin & Wang, Lu, 2020. "Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models," Energy Economics, Elsevier, vol. 86(C).
    15. Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
    16. Vassallo, Danilo & Buccheri, Giuseppe & Corsi, Fulvio, 2021. "A DCC-type approach for realized covariance modeling with score-driven dynamics," International Journal of Forecasting, Elsevier, vol. 37(2), pages 569-586.
    17. Golosnoy, Vasyl & Hamid, Alain & Okhrin, Yarema, 2014. "The empirical similarity approach for volatility prediction," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 321-329.
    18. Deev, Oleg & Plíhal, Tomáš, 2022. "How to calm down the markets? The effects of COVID-19 economic policy responses on financial market uncertainty," Research in International Business and Finance, Elsevier, vol. 60(C).
    19. Opschoor, Anne & Lucas, André, 2023. "Time-varying variance and skewness in realized volatility measures," International Journal of Forecasting, Elsevier, vol. 39(2), pages 827-840.
    20. Ke Yang & Langnan Chen, 2014. "Realized Volatility Forecast: Structural Breaks, Long Memory, Asymmetry, and Day-of-the-Week Effect," International Review of Finance, International Review of Finance Ltd., vol. 14(3), pages 345-392, September.

    More about this item

    Keywords

    HAR; ARIMA; Covid-19; Positivity Rate; Forecasting;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:82:y:2022:i:pa:s0038012122000039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.