IDEAS home Printed from https://ideas.repec.org/a/eee/resene/v43y2016icp153-171.html
   My bibliography  Save this article

How much do alternative cookstoves reduce biomass fuel use? Evidence from North India

Author

Listed:
  • Brooks, N.
  • Bhojvaid, V.
  • Jeuland, M.A.
  • Lewis, J.J.
  • Patange, O.
  • Pattanayak, S.K.

Abstract

Despite widespread global efforts to promote clean cookstoves to achieve improvements in air and forest quality, and to reduce global climate change, surprisingly little is known about the degree to which these actually reduce biomass fuel consumption in real-world settings. Using data from in-house weighing of fuel conducted in rural India, we examine the impact of cleaner cookstoves – most of which are LPG stoves – on three key outcomes related to solid fuel use. Our results suggest that using a clean cookstove is associated with daily reductions of about 4.5kg of biomass fuel, 160 fewer minutes cooking on traditional stoves, and 105 fewer minutes collecting biomass fuels. These findings of substantial savings are robust to the use of estimators with varying levels of control for selection, and to alternative data obtained from household self-reports. Our results support the idea that efforts to promote clean stoves among poor rural households can reduce solid fuel use and cooking time, and that rebound effects toward greater amounts of cooking on multiple stoves are not sufficient to eliminate these gains. We also find, however, that households who have greater wealth, fewer members, are in less marginalized groups, and practice other health-averting behaviors, are more likely to use these cleaner stoves, which suggests that socio-economic status plays an important role in determining who benefits from such technologies. Future efforts to capture social benefits must therefore consider how to promote the use of alternative technologies by poor households, given that these households are least likely to own clean stoves.

Suggested Citation

  • Brooks, N. & Bhojvaid, V. & Jeuland, M.A. & Lewis, J.J. & Patange, O. & Pattanayak, S.K., 2016. "How much do alternative cookstoves reduce biomass fuel use? Evidence from North India," Resource and Energy Economics, Elsevier, vol. 43(C), pages 153-171.
  • Handle: RePEc:eee:resene:v:43:y:2016:i:c:p:153-171
    DOI: 10.1016/j.reseneeco.2015.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0928765515000767
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.reseneeco.2015.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rema Hanna & Esther Duflo & Michael Greenstone, 2016. "Up in Smoke: The Influence of Household Behavior on the Long-Run Impact of Improved Cooking Stoves," American Economic Journal: Economic Policy, American Economic Association, vol. 8(1), pages 80-114, February.
    2. Ruiz-Mercado, Ilse & Masera, Omar & Zamora, Hilda & Smith, Kirk R., 2011. "Adoption and sustained use of improved cookstoves," Energy Policy, Elsevier, vol. 39(12), pages 7557-7566.
    3. James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492, National Bureau of Economic Research, Inc.
    4. Steven D. Levitt & John A. List, 2011. "Was There Really a Hawthorne Effect at the Hawthorne Plant? An Analysis of the Original Illumination Experiments," American Economic Journal: Applied Economics, American Economic Association, vol. 3(1), pages 224-238, January.
    5. Kremer, Michael R. & Karlan, D. S. & Hornbeck, Richard A. & Gine, X. & Duflo, E. & Pariente, W. & Null, C. & Miguel, E. & Devoto, F. & Crepon, B. & Banerjee, A. & Zwane, A. P. & Zinman, J. & Van Dusen, 2011. "Being Surveyed Can Change Later Behavior and Related Parameter Estimates," Scholarly Articles 11339433, Harvard University Department of Economics.
    6. Subhrendu K. Pattanayak & Alexander Pfaff, 2009. "Behavior, Environment, and Health in Developing Countries: Evaluation and Valuation," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 183-217, September.
    7. Mani Nepal & Apsara Nepal & Kristin Grimsurd, "undated". "Unbelievable but True -- Improved cook-stoves are not helpful in reducing firewood demand in Nepal," Working papers 51, The South Asian Network for Development and Environmental Economics.
    8. Chen, Le & Heerink, Nico & van den Berg, Marrit, 2006. "Energy consumption in rural China: A household model for three villages in Jiangxi Province," Ecological Economics, Elsevier, vol. 58(2), pages 407-420, June.
    9. Kishore, V.V.N & Ramana, P.V, 2002. "Improved cookstoves in rural India: how improved are they?," Energy, Elsevier, vol. 27(1), pages 47-63.
    10. Marc Jeuland & Subhrendu K. Pattanayak & Randall Bluffstone, 2015. "The Economics of Household Air Pollution," Annual Review of Resource Economics, Annual Reviews, vol. 7(1), pages 81-108, October.
    11. Thomas Dohmen & Armin Falk & David Huffman & Uwe Sunde & Jürgen Schupp & Gert G. Wagner, 2011. "Individual Risk Attitudes: Measurement, Determinants, And Behavioral Consequences," Journal of the European Economic Association, European Economic Association, vol. 9(3), pages 522-550, June.
    12. Agurto Adrianzén, Marcos, 2013. "Improved cooking stoves and firewood consumption: Quasi-experimental evidence from the Northern Peruvian Andes," Ecological Economics, Elsevier, vol. 89(C), pages 135-143.
    13. Subhrendu K Pattanayak, 2009. "Rough Guide to Impact Evaluation of Environmental and Development Programs," Working Papers id:2187, eSocialSciences.
    14. Pattanayak, Subhrendu K. & Sills, Erin O. & Kramer, Randall A., 2004. "Seeing the forest for the fuel," Environment and Development Economics, Cambridge University Press, vol. 9(2), pages 155-179, May.
    15. Fredrik Carlsson & Peter Martinsson & Ping Qin & Matthias Sutter, 2013. "The influence of spouses on household decision making under risk: an experiment in rural China," Experimental Economics, Springer;Economic Science Association, vol. 16(3), pages 383-401, September.
    16. Gunther Bensch & Jörg Peters, 2013. "Alleviating Deforestation Pressures? Impacts of Improved Stove Dissemination on Charcoal Consumption in Urban Senegal," Land Economics, University of Wisconsin Press, vol. 89(4), pages 676-698.
    17. Grieshop, Andrew P. & Marshall, Julian D. & Kandlikar, Milind, 2011. "Health and climate benefits of cookstove replacement options," Energy Policy, Elsevier, vol. 39(12), pages 7530-7542.
    18. Bensch, Gunther & Peters, Jörg, 2015. "The intensive margin of technology adoption – Experimental evidence on improved cooking stoves in rural Senegal," Journal of Health Economics, Elsevier, vol. 42(C), pages 44-63.
    19. Heltberg, Rasmus, 2005. "Factors determining household fuel choice in Guatemala," Environment and Development Economics, Cambridge University Press, vol. 10(3), pages 337-361, June.
    20. Rasmus Heltberg & Thomas Channing Arndt & Nagothu Udaya Sekhar, 2000. "Fuelwood Consumption and Forest Degradation: A Household Model for Domestic Energy Substitution in Rural India," Land Economics, University of Wisconsin Press, vol. 76(2), pages 213-232.
    21. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    22. Masera, Omar R. & Saatkamp, Barbara D. & Kammen, Daniel M., 2000. "From Linear Fuel Switching to Multiple Cooking Strategies: A Critique and Alternative to the Energy Ladder Model," World Development, Elsevier, vol. 28(12), pages 2083-2103, December.
    23. Todd, Petra E., 2008. "Evaluating Social Programs with Endogenous Program Placement and Selection of the Treated," Handbook of Development Economics, in: T. Paul Schultz & John A. Strauss (ed.), Handbook of Development Economics, edition 1, volume 4, chapter 60, pages 3847-3894, Elsevier.
    24. Marc A Jeuland & Subhrendu K Pattanayak, 2012. "Benefits and Costs of Improved Cookstoves: Assessing the Implications of Variability in Health, Forest and Climate Impacts," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-15, February.
    25. Smith, Kirk R. & Sagar, Ambuj, 2014. "Making the clean available: Escaping India’s Chulha Trap," Energy Policy, Elsevier, vol. 75(C), pages 410-414.
    26. Heltberg, Rasmus, 2004. "Fuel switching: evidence from eight developing countries," Energy Economics, Elsevier, vol. 26(5), pages 869-887, September.
    27. Malla, Min Bikram & Bruce, Nigel & Bates, Elizabeth & Rehfuess, Eva, 2011. "Applying global cost-benefit analysis methods to indoor air pollution mitigation interventions in Nepal, Kenya and Sudan: Insights and challenges," Energy Policy, Elsevier, vol. 39(12), pages 7518-7529.
    28. John H. Y. Edwards & Christian Langpap, 2005. "Startup Costs and the Decision to Switch from Firewood to Gas Fuel," Land Economics, University of Wisconsin Press, vol. 81(4).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Talevi, Marta & Pattanayak, Subhrendu K. & Das, Ipsita & Lewis, Jessica J. & Singha, Ashok K., 2022. "Speaking from experience: Preferences for cooking with biogas in rural India," Energy Economics, Elsevier, vol. 107(C).
    2. Vania Vigolo & Rezarta Sallaku & Federico Testa, 2018. "Drivers and Barriers to Clean Cooking: A Systematic Literature Review from a Consumer Behavior Perspective," Sustainability, MDPI, vol. 10(11), pages 1-21, November.
    3. Gunther Bensch & Jörg Peters, 2020. "One‐Off Subsidies and Long‐Run Adoption—Experimental Evidence on Improved Cooking Stoves in Senegal," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(1), pages 72-90, January.
    4. Ngawang Dendup, 2021. "Returns to Grid Electricity on Firewood Consumption and Mechanism," Working Papers 2109, Waseda University, Faculty of Political Science and Economics.
    5. Krishnapriya, P.P. & Chandrasekaran, Maya & Jeuland, Marc & Pattanayak, Subhrendu K., 2021. "Do improved cookstoves save time and improve gender outcomes? Evidence from six developing countries," Energy Economics, Elsevier, vol. 102(C).
    6. MacCarty, Nordica A. & Bryden, Kenneth Mark, 2017. "Costs and impacts of potential energy strategies for rural households in developing communities," Energy, Elsevier, vol. 138(C), pages 1157-1174.
    7. Das, Karabee & Hiloidhari, Moonmoon & Baruah, D.C. & Nonhebel, Sanderine, 2018. "Impact of time expenditure on household preferences for cooking fuels," Energy, Elsevier, vol. 151(C), pages 309-316.
    8. Kar, Abhishek & Brauer, Michael & Bailis, Rob & Zerriffi, Hisham, 2020. "The risk of survey bias in self-reports vs. actual consumption of clean cooking fuels," World Development Perspectives, Elsevier, vol. 18(C).
    9. Choumert-Nkolo, Johanna & Combes Motel, Pascale & Le Roux, Leonard, 2019. "Stacking up the ladder: A panel data analysis of Tanzanian household energy choices," World Development, Elsevier, vol. 115(C), pages 222-235.
    10. Alexandra K. Shannon & Faraz Usmani & Subhrendu K. Pattanayak & Marc Jeuland, 2019. "The Price of Purity: Willingness to Pay for Air and Water Purification Technologies in Rajasthan, India," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1073-1100, August.
    11. Gupta, Aashish & Vyas, Sangita & Hathi, Payal & Khalid, Nazar & Srivastav, Nikhil & Spears, Dean & Coffey, Diane, 2019. "Persistence of solid fuel use despite increases in LPG ownership: New survey evidence from rural north India," SocArXiv yv2es, Center for Open Science.
    12. Faraz Usmani & Marc Jeuland & Subhrendu K. Pattanayak, 2018. "NGOs and the effectiveness of interventions," WIDER Working Paper Series wp-2018-59, World Institute for Development Economic Research (UNU-WIDER).
    13. Gebreegziabher, Zenebe & Beyene, Abebe D. & Bluffstone, Randall & Martinsson, Peter & Mekonnen, Alemu & Toman, Michael A., 2018. "Fuel savings, cooking time and user satisfaction with improved biomass cookstoves: Evidence from controlled cooking tests in Ethiopia," Resource and Energy Economics, Elsevier, vol. 52(C), pages 173-185.
    14. Dalia Fadly & Francisco Fontes & Miet Maertens, 2023. "Fuel for food: Access to clean cooking fuel and food security in India," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 15(2), pages 301-321, April.
    15. Ipsita Das & Jessica J Lewis & Ramona Ludolph & Melanie Bertram & Heather Adair-Rohani & Marc Jeuland, 2021. "The benefits of action to reduce household air pollution (BAR-HAP) model: A new decision support tool," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-22, January.
    16. Caleb Wright & Roger Sathre & Shashi Buluswar, 2020. "The global challenge of clean cooking systems," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1219-1240, December.
    17. Atteridge, Aaron & Weitz, Nina, 2017. "A political economy perspective on technology innovation in the Kenyan clean cookstove sector," Energy Policy, Elsevier, vol. 110(C), pages 303-312.
    18. Bensch, Gunther & Kluve, Jochen & Stöterau, Jonathan, 2021. "The market-based dissemination of energy-access technologies as a business model for rural entrepreneurs: Evidence from Kenya," Resource and Energy Economics, Elsevier, vol. 66(C).
    19. Kwofie, E.M. & Ngadi, M. & Sotocinal, S., 2017. "Energy efficiency and emission assessment of a continuous rice husk stove for rice parboiling," Energy, Elsevier, vol. 122(C), pages 340-349.
    20. Robert Ugochukwu Onyeneke & Chinyere Augusta Nwajiuba & Jane Munonye & Uwazie Iyke Uwazie & Nkechinyere Uwajumogu & Christian Obioma Uwadoka & Jonathan Ogbeni Aligbe, 2019. "Improved Cook-stoves and Environmental and Health Outcomes: Lessons from Cross River State, Nigeria," IJERPH, MDPI, vol. 16(19), pages 1-13, September.
    21. Festina Balidemaj & Christina Isaxon & Asmamaw Abera & Ebba Malmqvist, 2021. "Indoor Air Pollution Exposure of Women in Adama, Ethiopia, and Assessment of Disease Burden Attributable to Risk Factor," IJERPH, MDPI, vol. 18(18), pages 1-13, September.
    22. Faraz Usmani & Marc Jeuland & Subhrendu Pattanayak, 2018. "NGOs and the effectiveness of interventions," WIDER Working Paper Series 59, World Institute for Development Economic Research (UNU-WIDER).
    23. Dendup, Ngawang, 2022. "Returns to grid electricity on firewood and kerosene: Mechanism," Journal of Environmental Economics and Management, Elsevier, vol. 111(C).
    24. Jeuland, Marc & Tan Soo, Jie-Sheng & Shindell, Drew, 2018. "The need for policies to reduce the costs of cleaner cooking in low income settings: Implications from systematic analysis of costs and benefits," Energy Policy, Elsevier, vol. 121(C), pages 275-285.
    25. Randall Bluffstone & Abebe D. Beyene & Zenebe Gebreegziabher & Peter Martinsson & Alemu Mekonnen & Michael Toman, 2022. "Experience and Learning with Improved Technologies: Evidence from Improved Biomass Cookstoves in Ethiopia," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(2), pages 271-285, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malla, Sunil & Timilsina, Govinda R, 2014. "Household cooking fuel choice and adoption of improved cookstoves in developing countries : a review," Policy Research Working Paper Series 6903, The World Bank.
    2. Kohlin, Gunnar & Sills, Erin O. & Pattanayak, Subhrendu K. & Wilfong, Christopher, 2011. "Energy, gender and development: what are the linkages ? where is the evidence ?," Policy Research Working Paper Series 5800, The World Bank.
    3. Dendup, Ngawang & Arimura, Toshi H., 2019. "Information leverage: The adoption of clean cooking fuel in Bhutan," Energy Policy, Elsevier, vol. 125(C), pages 181-195.
    4. Jack Gregory & David I. Stern, 2012. "Fuel Choices in Rural Maharashtra," CCEP Working Papers 1207, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    5. Gould, Carlos F. & Urpelainen, Johannes, 2018. "LPG as a clean cooking fuel: Adoption, use, and impact in rural India," Energy Policy, Elsevier, vol. 122(C), pages 395-408.
    6. Jeuland, M.A. & Bhojvaid, V. & Kar, A. & Lewis, J.J. & Patange, O. & Pattanayak, S.K. & Ramanathan, N. & Rehman, I.H. & Tan Soo, J.S. & Ramanathan, V., 2015. "Preferences for improved cook stoves: Evidence from rural villages in north India," Energy Economics, Elsevier, vol. 52(PB), pages 287-298.
    7. Gebreegziabher, Zenebe & Beyene, Abebe D. & Bluffstone, Randall & Martinsson, Peter & Mekonnen, Alemu & Toman, Michael A., 2018. "Fuel savings, cooking time and user satisfaction with improved biomass cookstoves: Evidence from controlled cooking tests in Ethiopia," Resource and Energy Economics, Elsevier, vol. 52(C), pages 173-185.
    8. Jeuland, Marc & Tan Soo, Jie-Sheng & Shindell, Drew, 2018. "The need for policies to reduce the costs of cleaner cooking in low income settings: Implications from systematic analysis of costs and benefits," Energy Policy, Elsevier, vol. 121(C), pages 275-285.
    9. Guta, Dawit Diriba, 2014. "Effect of fuelwood scarcity and socio-economic factors on household bio-based energy use and energy substitution in rural Ethiopia," Energy Policy, Elsevier, vol. 75(C), pages 217-227.
    10. Bonan, Jacopo & Battiston, Pietro & Bleck, Jaimie & LeMay-Boucher, Philippe & Pareglio, Stefano & Sarr, Bassirou & Tavoni, Massimo, 2021. "Social interaction and technology adoption: Experimental evidence from improved cookstoves in Mali," World Development, Elsevier, vol. 144(C).
    11. Khandelwal, Meena & Hill, Matthew E. & Greenough, Paul & Anthony, Jerry & Quill, Misha & Linderman, Marc & Udaykumar, H.S., 2017. "Why Have Improved Cook-Stove Initiatives in India Failed?," World Development, Elsevier, vol. 92(C), pages 13-27.
    12. Muller, Christophe & Yan, Huijie, 2018. "Household fuel use in developing countries: Review of theory and evidence," Energy Economics, Elsevier, vol. 70(C), pages 429-439.
    13. Alem, Yonas & Ruhinduka, Remidius D., 2020. "Saving Africa's tropical forests through energy transition: A randomized controlled trial in Tanzania," Ruhr Economic Papers 885, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    14. Gebreegziabher, Zenebe & Mekonnen, Alemu & Kassie, Menale & Köhlin, Gunnar, 2012. "Urban energy transition and technology adoption: The case of Tigrai, northern Ethiopia," Energy Economics, Elsevier, vol. 34(2), pages 410-418.
    15. Alem, Yonas, 2021. "Mitigating climate change through sustainable technology adoption: Insights from cookstove interventions," Ruhr Economic Papers 907, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    16. Calzada, Joan & Sanz, Alex, 2018. "Universal access to clean cookstoves: Evaluation of a public program in Peru," Energy Policy, Elsevier, vol. 118(C), pages 559-572.
    17. Jagger, Pamela & Jumbe, Charles, 2016. "Stoves or sugar? Willingness to adopt improved cookstoves in Malawi," Energy Policy, Elsevier, vol. 92(C), pages 409-419.
    18. MacCarty, Nordica A. & Bryden, Kenneth Mark, 2016. "An integrated systems model for energy services in rural developing communities," Energy, Elsevier, vol. 113(C), pages 536-557.
    19. Thapa, Samir & Morrison, Mark & Parton, Kevin A, 2021. "Willingness to pay for domestic biogas plants and distributing carbon revenues to influence their purchase: A case study in Nepal," Energy Policy, Elsevier, vol. 158(C).
    20. Rahut, Dil Bahadur & Behera, Bhagirath & Ali, Akhter, 2016. "Patterns and determinants of household use of fuels for cooking: Empirical evidence from sub-Saharan Africa," Energy, Elsevier, vol. 117(P1), pages 93-104.

    More about this item

    Keywords

    Improved cookstoves; Heckman selection; Solid fuel use; India;
    All these keywords.

    JEL classification:

    • Q52 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Pollution Control Adoption and Costs; Distributional Effects; Employment Effects
    • Q23 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Forestry
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:resene:v:43:y:2016:i:c:p:153-171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505569 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.