IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v173y2023ics1364032122009352.html
   My bibliography  Save this article

Modelling the integrated achievement of clean cooking access and climate mitigation goals: An energy systems optimization approach

Author

Listed:
  • Hollands, A.F.
  • Daly, H.

Abstract

The United Nations Sustainable Development Goal target 7.1, to provide universal access to affordable, reliable and modern energy by 2030, must be achieved in the context of rapid reductions in global greenhouse gas (GHG) emissions. While replacing solid cooking fuels with liquid petroleum gas (LPG) opens questions about the compatibility of energy access and climate mitigation objectives, the environmental impact of 2.6 billion people continuing to rely on solid fuel for cooking and heating is significant. However, models used to map deep decarbonization pathways typically do not feature a granular pathway for universal clean cooking access, which limits the representation of these two interconnected transitions, mitigating climate change and achieving universal energy access. Here, we present a novel methodology for representing residential cooking pathways within the TIMES energy systems optimization model (ESOM) framework. The methodology is demonstrated using India as a proof-of-concept case study, where scenario analysis explores solutions that reach universal clean cooking access in the context of GHG emissions reductions. The model presented here is published and publicly available to access.

Suggested Citation

  • Hollands, A.F. & Daly, H., 2023. "Modelling the integrated achievement of clean cooking access and climate mitigation goals: An energy systems optimization approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
  • Handle: RePEc:eee:rensus:v:173:y:2023:i:c:s1364032122009352
    DOI: 10.1016/j.rser.2022.113054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122009352
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.113054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adriana Marcucci & Socrates Kypreos & Evangelos Panos, 2017. "The road to achieving the long-term Paris targets: energy transition and the role of direct air capture," Climatic Change, Springer, vol. 144(2), pages 181-193, September.
    2. Adjei-Mantey, Kwame & Takeuchi, Kenji & Quartey, Peter, 2021. "Impact of LPG promotion program in Ghana: The role of distance to refill," Energy Policy, Elsevier, vol. 158(C).
    3. Ekholm, Tommi & Krey, Volker & Pachauri, Shonali & Riahi, Keywan, 2010. "Determinants of household energy consumption in India," Energy Policy, Elsevier, vol. 38(10), pages 5696-5707, October.
    4. Fuso Nerini, Francesco & Dargaville, Roger & Howells, Mark & Bazilian, Morgan, 2015. "Estimating the cost of energy access: The case of the village of Suro Craic in Timor Leste," Energy, Elsevier, vol. 79(C), pages 385-397.
    5. Føyn, T. Helene Ystanes & Karlsson, Kenneth & Balyk, Olexandr & Grohnheit, Poul Erik, 2011. "A global renewable energy system: A modelling exercise in ETSAP/TIAM," Applied Energy, Elsevier, vol. 88(2), pages 526-534, February.
    6. Richard Loulou & Maryse Labriet, 2008. "ETSAP-TIAM: the TIMES integrated assessment model Part I: Model structure," Computational Management Science, Springer, vol. 5(1), pages 7-40, February.
    7. Zoi Vrontisi & Gunnar Luderer & Bert Saveyn & Kimon Keramidas & Lara Aleluia Reis & Lavinia Baumstark & Christoph Bertram & Harmen Sytze de Boer & Laurent Drouet & Kostas Fragkiadakis & Oliver Fricko , 2018. "Enhancing global climate policy ambition towards a 1.5 °C stabilization: a short-term multi-model assessment," Post-Print halshs-01782274, HAL.
    8. Keigo Akimoto & Fuminori Sano & Toshimasa Tomoda, 2018. "GHG emission pathways until 2300 for the 1.5 °C temperature rise target and the mitigation costs achieving the pathways," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 839-852, August.
    9. van Vliet, Oscar & Krey, Volker & McCollum, David & Pachauri, Shonali & Nagai, Yu & Rao, Shilpa & Riahi, Keywan, 2012. "Synergies in the Asian energy system: Climate change, energy security, energy access and air pollution," Energy Economics, Elsevier, vol. 34(S3), pages 470-480.
    10. Dagnachew, Anteneh G. & Hof, Andries F. & Lucas, Paul L. & van Vuuren, Detlef P., 2020. "Scenario analysis for promoting clean cooking in Sub-Saharan Africa: Costs and benefits," Energy, Elsevier, vol. 192(C).
    11. Joeri Rogelj & Gunnar Luderer & Robert C. Pietzcker & Elmar Kriegler & Michiel Schaeffer & Volker Krey & Keywan Riahi, 2015. "Energy system transformations for limiting end-of-century warming to below 1.5 °C," Nature Climate Change, Nature, vol. 5(6), pages 519-527, June.
    12. Baidya, S. & Borken-Kleefeld, J., 2009. "Atmospheric emissions from road transportation in India," Energy Policy, Elsevier, vol. 37(10), pages 3812-3822, October.
    13. Gracceva, Francesco & Zeniewski, Peter, 2014. "A systemic approach to assessing energy security in a low-carbon EU energy system," Applied Energy, Elsevier, vol. 123(C), pages 335-348.
    14. Hiloidhari, Moonmoon & Das, Dhiman & Baruah, D.C., 2014. "Bioenergy potential from crop residue biomass in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 504-512.
    15. Hsu, Eric & Forougi, Noah & Gan, Meixi & Muchiri, Elizabeth & Pope, Dan & Puzzolo, Elisa, 2021. "Microfinance for clean cooking: What lessons can be learned for scaling up LPG adoption in Kenya through managed loans?," Energy Policy, Elsevier, vol. 154(C).
    16. Dioha, Michael O. & Kumar, Atul, 2020. "Exploring sustainable energy transitions in sub-Saharan Africa residential sector: The case of Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    17. Paudel, Uttam & Khatri, Umesh & Pant, Krishna Prasad, 2018. "Understanding the determinants of household cooking fuel choice in Afghanistan: A multinomial logit estimation," Energy, Elsevier, vol. 156(C), pages 55-62.
    18. Pohekar, S.D. & Kumar, Dinesh & Ramachandran, M., 2005. "Dissemination of cooking energy alternatives in India--a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(4), pages 379-393, August.
    19. Andrea Herbst & Felipe Andrés Toro & Felix Reitze & Eberhard Jochem, 2012. "Introduction to Energy Systems Modelling," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 148(II), pages 111-135, June.
    20. Uwe Remme & Markus Blesl, 2008. "A global perspective to achieve a low-carbon society (LCS): scenario analysis with the ETSAP-TIAM model," Climate Policy, Taylor & Francis Journals, vol. 8(sup1), pages 60-75, December.
    21. Noah Ver Beek & Elvin Vindel & Matthew Kuperus Heun & Paul E. Brockway, 2020. "Quantifying the Environmental Impacts of Cookstove Transitions: A Societal Exergy Analysis Based Model of Energy Consumption and Forest Stocks in Honduras," Energies, MDPI, vol. 13(12), pages 1-22, June.
    22. Arnulf Grubler & Charlie Wilson & Nuno Bento & Benigna Boza-Kiss & Volker Krey & David L. McCollum & Narasimha D. Rao & Keywan Riahi & Joeri Rogelj & Simon Stercke & Jonathan Cullen & Stefan Frank & O, 2018. "A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies," Nature Energy, Nature, vol. 3(6), pages 515-527, June.
    23. Robert Bailis & Rudi Drigo & Adrian Ghilardi & Omar Masera, 2015. "The carbon footprint of traditional woodfuels," Nature Climate Change, Nature, vol. 5(3), pages 266-272, March.
    24. Shonali Pachauri & Miguel Poblete-Cazenave & Arda Aktas & Matthew J. Gidden, 2021. "Access to clean cooking services in energy and emission scenarios after COVID-19," Nature Energy, Nature, vol. 6(11), pages 1067-1076, November.
    25. Pundo, Moses O. & Fraser, Gavin C.G., 2006. "Multinominal logit analysis of household cooking fuel choice in rural Kenya: The case of Kisumu district," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 45(1), pages 1-14, March.
    26. Colin Cameron & Shonali Pachauri & Narasimha D. Rao & David McCollum & Joeri Rogelj & Keywan Riahi, 2016. "Policy trade-offs between climate mitigation and clean cook-stove access in South Asia," Nature Energy, Nature, vol. 1(1), pages 1-5, January.
    27. van Ruijven, Bas J. & van Vuuren, Detlef P. & de Vries, Bert J.M. & Isaac, Morna & van der Sluijs, Jeroen P. & Lucas, Paul L. & Balachandra, P., 2011. "Model projections for household energy use in India," Energy Policy, Elsevier, vol. 39(12), pages 7747-7761.
    28. Shupler, Matthew & O'Keefe, Mark & Puzzolo, Elisa & Nix, Emily & Anderson de Cuevas, Rachel & Mwitari, James & Gohole, Arthur & Sang, Edna & Čukić, Iva & Menya, Diana & Pope, Daniel, 2021. "Pay-as-you-go liquefied petroleum gas supports sustainable clean cooking in Kenyan informal urban settlement during COVID-19 lockdown," Applied Energy, Elsevier, vol. 292(C).
    29. Ronzi, Sara & Puzzolo, Elisa & Hyseni, Lirije & Higgerson, James & Stanistreet, Debbi & Hugo, MBatchou Ngahane Bertrand & Bruce, Nigel & Pope, Daniel, 2019. "Using photovoice methods as a community-based participatory research tool to advance uptake of clean cooking and improve health: The LPG adoption in Cameroon evaluation studies," Social Science & Medicine, Elsevier, vol. 228(C), pages 30-40.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Murshed, Muntasir, 2023. "The relevance of reducing income inequality for eliminating urban-rural divide in clean cooking fuel accessibility: Evidence from Latin America and the Caribbean," Energy, Elsevier, vol. 278(C).
    2. Naeem, Muhammad Abubakr & Appiah, Michael & Taden, John & Amoasi, Richard & Gyamfi, Bright Akwasi, 2023. "Transitioning to clean energy: Assessing the impact of renewable energy, bio-capacity and access to clean fuel on carbon emissions in OECD economies," Energy Economics, Elsevier, vol. 127(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shonali Pachauri & Narasimha D Rao & Colin Cameron, 2018. "Outlook for modern cooking energy access in Central America," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-20, June.
    2. Fydess Khundi-Mkomba, 2021. "Are Urban Rwandan Households using Modern Energy Sources? An Exploration of Cooking Fuel Choices," International Journal of Energy Economics and Policy, Econjournals, vol. 11(2), pages 325-332.
    3. Wang, Chengchao & Yang, Yusheng & Zhang, Yaoqi, 2012. "Rural household livelihood change, fuelwood substitution, and hilly ecosystem restoration: Evidence from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2475-2482.
    4. Riva, Fabio & Gardumi, Francesco & Tognollo, Annalisa & Colombo, Emanuela, 2019. "Soft-linking energy demand and optimisation models for local long-term electricity planning: An application to rural India," Energy, Elsevier, vol. 166(C), pages 32-46.
    5. Hanley, Emma S. & Deane, JP & Gallachóir, BP Ó, 2018. "The role of hydrogen in low carbon energy futures–A review of existing perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3027-3045.
    6. Krey, Volker & O'Neill, Brian C. & van Ruijven, Bas & Chaturvedi, Vaibhav & Daioglou, Vassilis & Eom, Jiyong & Jiang, Leiwen & Nagai, Yu & Pachauri, Shonali & Ren, Xiaolin, 2012. "Urban and rural energy use and carbon dioxide emissions in Asia," Energy Economics, Elsevier, vol. 34(S3), pages 272-283.
    7. Panos, Evangelos & Glynn, James & Kypreos, Socrates & Lehtilä, Antti & Yue, Xiufeng & Ó Gallachóir, Brian & Daniels, David & Dai, Hancheng, 2023. "Deep decarbonisation pathways of the energy system in times of unprecedented uncertainty in the energy sector," Energy Policy, Elsevier, vol. 180(C).
    8. Guadalupe Pérez & Jorge M. Islas-Samperio & Genice K. Grande-Acosta & Fabio Manzini, 2022. "Socioeconomic and Environmental Aspects of Traditional Firewood for Cooking on the Example of Rural and Peri-Urban Mexican Households," Energies, MDPI, vol. 15(13), pages 1-30, July.
    9. Shupler, Matthew & Mwitari, James & Gohole, Arthur & Anderson de Cuevas, Rachel & Puzzolo, Elisa & Čukić, Iva & Nix, Emily & Pope, Daniel, 2021. "COVID-19 impacts on household energy & food security in a Kenyan informal settlement: The need for integrated approaches to the SDGs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    10. Poblete-Cazenave, Miguel & Pachauri, Shonali, 2018. "A structural model of cooking fuel choices in developing countries," Energy Economics, Elsevier, vol. 75(C), pages 449-463.
    11. Martínez-Gordón, R. & Morales-España, G. & Sijm, J. & Faaij, A.P.C., 2021. "A review of the role of spatial resolution in energy systems modelling: Lessons learned and applicability to the North Sea region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    12. Michael O. Dioha & Nnaemeka Vincent Emodi, 2019. "Investigating the Impacts of Energy Access Scenarios in the Nigerian Household Sector by 2030," Resources, MDPI, vol. 8(3), pages 1-18, July.
    13. Heleen L. Soest & Lara Aleluia Reis & Luiz Bernardo Baptista & Christoph Bertram & Jacques Després & Laurent Drouet & Michel Elzen & Panagiotis Fragkos & Oliver Fricko & Shinichiro Fujimori & Neil Gra, 2021. "Global roll-out of comprehensive policy measures may aid in bridging emissions gap," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    14. Shinichiro Fujimori & Tomoko Hasegawa & Volker Krey & Keywan Riahi & Christoph Bertram & Benjamin Leon Bodirsky & Valentina Bosetti & Jessica Callen & Jacques Després & Jonathan Doelman & Laurent Drou, 2019. "A multi-model assessment of food security implications of climate change mitigation," Nature Sustainability, Nature, vol. 2(5), pages 386-396, May.
    15. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    16. Lay, Jann & Ondraczek, Janosch & Stoever, Jana, 2013. "Renewables in the energy transition: Evidence on solar home systems and lighting fuel choice in Kenya," Energy Economics, Elsevier, vol. 40(C), pages 350-359.
    17. Nieves, J.A. & Aristizábal, A.J. & Dyner, I. & Báez, O. & Ospina, D.H., 2019. "Energy demand and greenhouse gas emissions analysis in Colombia: A LEAP model application," Energy, Elsevier, vol. 169(C), pages 380-397.
    18. Crow, Daniel J.G. & Giarola, Sara & Hawkes, Adam D., 2018. "A dynamic model of global natural gas supply," Applied Energy, Elsevier, vol. 218(C), pages 452-469.
    19. Rose, Julian & Bensch, Gunther & Munyehirwe, Anicet & Peters, Jörg, 2022. "The forgotten coal: Charcoal demand in sub-Saharan Africa," World Development Perspectives, Elsevier, vol. 25(C).
    20. Kojo Sarfo Gyamfi & Elena Gaura & James Brusey & Alessandro Bezerra Trindade & Nandor Verba, 2020. "Understanding Household Fuel Choice Behaviour in the Amazonas State, Brazil: Effects of Validation and Feature Selection," Energies, MDPI, vol. 13(15), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:173:y:2023:i:c:s1364032122009352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.