IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v292y2021ics0306261921002762.html
   My bibliography  Save this article

Pay-as-you-go liquefied petroleum gas supports sustainable clean cooking in Kenyan informal urban settlement during COVID-19 lockdown

Author

Listed:
  • Shupler, Matthew
  • O'Keefe, Mark
  • Puzzolo, Elisa
  • Nix, Emily
  • Anderson de Cuevas, Rachel
  • Mwitari, James
  • Gohole, Arthur
  • Sang, Edna
  • Čukić, Iva
  • Menya, Diana
  • Pope, Daniel

Abstract

Approximately 2.8 billion people rely on polluting fuels (e.g. wood, kerosene) for cooking. With affordability being a key access barrier to clean cooking fuels, such as liquefied petroleum gas (LPG), pay-as-you-go (PAYG) LPG smart meter technology may help resource-poor households adopt LPG by allowing incremental fuel payments. To understand the potential for PAYG LPG to facilitate clean cooking, objective evaluations of customers’ cooking and spending patterns are needed. This study uses novel smart meter data collected between January 2018-June 2020, spanning COVID-19 lockdown, from 426 PAYG LPG customers living in an informal settlement in Nairobi, Kenya to evaluate stove usage (e.g. cooking events/day, cooking event length). Seven semi-structured interviews were conducted in August 2020 to provide context for potential changes in cooking behaviours during lockdown. Using stove monitoring data, objective comparisons of cooking patterns are made with households using purchased 6 kg cylinder LPG in peri-urban Eldoret, Kenya. In Nairobi, 95% of study households continued using PAYG LPG during COVID-19 lockdown, with consumption increasing from 0.97 to 1.22 kg/capita/month. Daily cooking event frequency also increased by 60% (1.07 to 1.72 events/day). In contrast, average days/month using LPG declined by 75% during lockdown (17 to four days) among seven households purchasing 6 kg cylinder LPG in Eldoret. Interviewed customers reported benefits of PAYG LPG beyond fuel affordability, including safety, time savings and cylinder delivery. In the first study assessing PAYG LPG cooking patterns, LPG use was sustained despite a COVID-19 lockdown, illustrating how PAYG smart meter technology may help foster clean cooking access.

Suggested Citation

  • Shupler, Matthew & O'Keefe, Mark & Puzzolo, Elisa & Nix, Emily & Anderson de Cuevas, Rachel & Mwitari, James & Gohole, Arthur & Sang, Edna & Čukić, Iva & Menya, Diana & Pope, Daniel, 2021. "Pay-as-you-go liquefied petroleum gas supports sustainable clean cooking in Kenyan informal urban settlement during COVID-19 lockdown," Applied Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:appene:v:292:y:2021:i:c:s0306261921002762
    DOI: 10.1016/j.apenergy.2021.116769
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921002762
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116769?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shankar, Anita V. & Quinn, Ashlinn K. & Dickinson, Katherine L. & Williams, Kendra N. & Masera, Omar & Charron, Dana & Jack, Darby & Hyman, Jasmine & Pillarisetti, Ajay & Bailis, Rob & Kumar, Praveen , 2020. "Everybody stacks: Lessons from household energy case studies to inform design principles for clean energy transitions," Energy Policy, Elsevier, vol. 141(C).
    2. Abhishek Kar & Shonali Pachauri & Rob Bailis & Hisham Zerriffi, 2019. "Using sales data to assess cooking gas adoption and the impact of India’s Ujjwala programme in rural Karnataka," Nature Energy, Nature, vol. 4(9), pages 806-814, September.
    3. Grieshop, Andrew P. & Marshall, Julian D. & Kandlikar, Milind, 2011. "Health and climate benefits of cookstove replacement options," Energy Policy, Elsevier, vol. 39(12), pages 7530-7542.
    4. Troncoso, Karin & Soares da Silva, Agnes, 2017. "LPG fuel subsidies in Latin America and the use of solid fuels to cook," Energy Policy, Elsevier, vol. 107(C), pages 188-196.
    5. Daniel Lawrence Wilson & Kendra N. Williams & Ajay Pillarisetti, 2020. "An Integrated Sensor Data Logging, Survey, and Analytics Platform for Field Research and Its Application in HAPIN, a Multi-Center Household Energy Intervention Trial," Sustainability, MDPI, vol. 12(5), pages 1-15, February.
    6. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    7. Robert Bailis & Rudi Drigo & Adrian Ghilardi & Omar Masera, 2015. "The carbon footprint of traditional woodfuels," Nature Climate Change, Nature, vol. 5(3), pages 266-272, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hollands, A.F. & Daly, H., 2023. "Modelling the integrated achievement of clean cooking access and climate mitigation goals: An energy systems optimization approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    2. Perros, T. & Allison, A.L. & Tomei, J. & Aketch, V. & Parikh, P., 2023. "Cleaning up the stack: Evaluating a clean cooking fuel stacking intervention in urban Kenya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Nikolas Schöne & Raluca Dumitrescu & Boris Heinz, 2023. "Techno-Economic Evaluation of Hydrogen-Based Cooking Solutions in Remote African Communities—The Case of Kenya," Energies, MDPI, vol. 16(7), pages 1-33, April.
    4. Biswas, Shreya & Das, Upasak, 2022. "Adding fuel to human capital: Exploring the educational effects of cooking fuel choice from rural India," Energy Economics, Elsevier, vol. 105(C).
    5. Shupler, Matthew & Mwitari, James & Gohole, Arthur & Anderson de Cuevas, Rachel & Puzzolo, Elisa & Čukić, Iva & Nix, Emily & Pope, Daniel, 2021. "COVID-19 impacts on household energy & food security in a Kenyan informal settlement: The need for integrated approaches to the SDGs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    6. Matthew Leach & Chris Mullen & Jacquetta Lee & Bartosz Soltowski & Neal Wade & Stuart Galloway & William Coley & Shafiqa Keddar & Nigel Scott & Simon Batchelor, 2021. "Modelling the Costs and Benefits of Modern Energy Cooking Services—Methods and Case Studies," Energies, MDPI, vol. 14(12), pages 1-28, June.
    7. Iva Čukić & Chris Kypridemos & Alex W. Evans & Daniel Pope & Elisa Puzzolo, 2021. "Towards Sustainable Development Goal 7 “Universal Access to Clean Modern Energy”: National Strategy in Rwanda to Scale Clean Cooking with Bottled Gas," Energies, MDPI, vol. 14(15), pages 1-19, July.
    8. Nikolas Schöne & Boris Heinz, 2023. "Semi-Systematic Literature Review on the Contribution of Hydrogen to Universal Access to Energy in the Rationale of Sustainable Development Goal Target 7.1," Energies, MDPI, vol. 16(4), pages 1-42, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shupler, Matthew & Mwitari, James & Gohole, Arthur & Anderson de Cuevas, Rachel & Puzzolo, Elisa & Čukić, Iva & Nix, Emily & Pope, Daniel, 2021. "COVID-19 impacts on household energy & food security in a Kenyan informal settlement: The need for integrated approaches to the SDGs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Gill-Wiehl, A. & Ray, I. & Kammen, D., 2021. "Is clean cooking affordable? A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Perros, T. & Allison, A.L. & Tomei, J. & Aketch, V. & Parikh, P., 2023. "Cleaning up the stack: Evaluating a clean cooking fuel stacking intervention in urban Kenya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    4. Munyehirwe, Anicet & Peters, Jörg & Sievert, Maximiliane & Bulte, Erwin H. & Fiala, Nathan, 2022. "Energy efficiency and local rebound effects: Theory and experimental evidence from Rwanda," Ruhr Economic Papers 934, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    5. Kar, Abhishek & Brauer, Michael & Bailis, Rob & Zerriffi, Hisham, 2020. "The risk of survey bias in self-reports vs. actual consumption of clean cooking fuels," World Development Perspectives, Elsevier, vol. 18(C).
    6. Mardones, Cristian, 2021. "Ex-post evaluation and cost-benefit analysis of a heater replacement program implemented in southern Chile," Energy, Elsevier, vol. 227(C).
    7. Debbi Stanistreet & Lirije Hyseni & Elisa Puzzolo & James Higgerson & Sara Ronzi & Rachel Anderson de Cuevas & Oluwakorede Adekoje & Nigel Bruce & Bertrand Mbatchou Ngahane & Daniel Pope, 2019. "Barriers and Facilitators to the Adoption and Sustained Use of Cleaner Fuels in Southwest Cameroon: Situating ‘Lay’ Knowledge within Evidence-Based Policy and Practice," IJERPH, MDPI, vol. 16(23), pages 1-18, November.
    8. Susann Stritzke & Malcolm Bricknell & Matthew Leach & Samir Thapa & Yesmeen Khalifa & Ed Brown, 2023. "Impact Financing for Clean Cooking Energy Transitions: Reviews and Prospects," Energies, MDPI, vol. 16(16), pages 1-26, August.
    9. Gupta, Ridhima & Pelli, Martino, 2021. "Electrification and cooking fuel choice in rural India," World Development, Elsevier, vol. 146(C).
    10. Rose, Julian & Bensch, Gunther & Munyehirwe, Anicet & Peters, Jörg, 2022. "The forgotten coal: Charcoal demand in sub-Saharan Africa," World Development Perspectives, Elsevier, vol. 25(C).
    11. Khandelwal, Meena & Hill, Matthew E. & Greenough, Paul & Anthony, Jerry & Quill, Misha & Linderman, Marc & Udaykumar, H.S., 2017. "Why Have Improved Cook-Stove Initiatives in India Failed?," World Development, Elsevier, vol. 92(C), pages 13-27.
    12. Vyas, Sangita & Gupta, Aashish & Khalid, Nazar, 2021. "Gender and LPG use after government intervention in rural north India," World Development, Elsevier, vol. 148(C).
    13. Gunther Bensch & Jörg Peters, 2020. "One‐Off Subsidies and Long‐Run Adoption—Experimental Evidence on Improved Cooking Stoves in Senegal," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(1), pages 72-90, January.
    14. Simon Batchelor & Ed Brown & Nigel Scott & Jon Leary, 2019. "Two Birds, One Stone—Reframing Cooking Energy Policies in Africa and Asia," Energies, MDPI, vol. 12(9), pages 1-18, April.
    15. Vyas, Sangita & Gupta, Aashish & Khalid, Nazar, 2020. "Gender and LPG use after government intervention in rural north India," SocArXiv 3v4cj, Center for Open Science.
    16. Talevi, Marta & Pattanayak, Subhrendu K. & Das, Ipsita & Lewis, Jessica J. & Singha, Ashok K., 2022. "Speaking from experience: Preferences for cooking with biogas in rural India," Energy Economics, Elsevier, vol. 107(C).
    17. Mutanga, Shingirirai S. & Quitzow, Rainer & Steckel, Jan Christoph, 2018. "Tackling energy, climate and development challenges in Africa," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-14.
    18. Shonali Pachauri & Narasimha D Rao & Colin Cameron, 2018. "Outlook for modern cooking energy access in Central America," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-20, June.
    19. Gebreegziabher, Zenebe & Beyene, Abebe D. & Bluffstone, Randall & Martinsson, Peter & Mekonnen, Alemu & Toman, Michael A., 2018. "Fuel savings, cooking time and user satisfaction with improved biomass cookstoves: Evidence from controlled cooking tests in Ethiopia," Resource and Energy Economics, Elsevier, vol. 52(C), pages 173-185.
    20. Ujjayant Chakravorty & Ridhima Gupta & Martino Pelli, 2022. "The economics of rural energy use in developing countries," CIRANO Working Papers 2022s-12, CIRANO.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:292:y:2021:i:c:s0306261921002762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.