IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i16p5992-d1217924.html
   My bibliography  Save this article

Impact Financing for Clean Cooking Energy Transitions: Reviews and Prospects

Author

Listed:
  • Susann Stritzke

    (MECS Programme, STEER (Sustainable Transitions: Energy, Environment, Resilience-Centre), School of Social Sciences and Humanities, Loughborough University, Loughborough LE11 3TT, UK)

  • Malcolm Bricknell

    (MECS Programme, STEER (Sustainable Transitions: Energy, Environment, Resilience-Centre), School of Social Sciences and Humanities, Loughborough University, Loughborough LE11 3TT, UK)

  • Matthew Leach

    (MECS Programme, Gamos Ltd., Reading RG1 4LS, UK)

  • Samir Thapa

    (MECS Programme, STEER (Sustainable Transitions: Energy, Environment, Resilience-Centre), School of Social Sciences and Humanities, Loughborough University, Loughborough LE11 3TT, UK)

  • Yesmeen Khalifa

    (MECS Programme, STEER (Sustainable Transitions: Energy, Environment, Resilience-Centre), School of Social Sciences and Humanities, Loughborough University, Loughborough LE11 3TT, UK)

  • Ed Brown

    (MECS Programme, STEER (Sustainable Transitions: Energy, Environment, Resilience-Centre), School of Social Sciences and Humanities, Loughborough University, Loughborough LE11 3TT, UK)

Abstract

Achieving universal access to clean cooking requires a significant mobilization of capital to close the current funding gap of around US$7 bn per year. The clean cooking landscape has changed considerably with substantial innovation in terms of technology, business models, and services. The transition towards higher-tier, modern energy cooking (MEC) solutions provides key opportunities for innovative financing models to scale MEC globally. Transitions from cooking with polluting fuels to MEC have significant positive impacts on the environment, gender equality, and health. Impact Finance to monetize these co-benefits for MEC solutions is widely seen as an outstanding opportunity to channel funding into MEC transitions. However, except for climate funding, opportunities to channel finance for wider impact SDG benefits arising from MEC have proved challenging to realize in practice. This article explores in detail two new approaches which are taking advantage of features of digital technology to overcome some of these obstacles. It adds to the recent debate around climate finance for clean cooking and presents key learning lessons from developing and piloting the ‘Metered Methodology for Clean Cooking Devices’ as the current most accurate approach to estimate carbon savings for MEC and the ‘Clean Impact Bond (CIB)’ which aims at monetizing health and gender-co-benefits. The paper demonstrates how robust methodologies can help to accelerate funding for MEC and calls for joint approaches to standardize and streamline climate and outcome finance approaches to enhance their impact by making them more accessible for a wider range of MEC technologies, geographies, and projects.

Suggested Citation

  • Susann Stritzke & Malcolm Bricknell & Matthew Leach & Samir Thapa & Yesmeen Khalifa & Ed Brown, 2023. "Impact Financing for Clean Cooking Energy Transitions: Reviews and Prospects," Energies, MDPI, vol. 16(16), pages 1-26, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5992-:d:1217924
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/16/5992/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/16/5992/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kalkuhl, Matthias & Edenhofer, Ottmar & Lessmann, Kai, 2013. "Renewable energy subsidies: Second-best policy or fatal aberration for mitigation?," Resource and Energy Economics, Elsevier, vol. 35(3), pages 217-234.
    2. James X. Zhan & Amelia U. Santos-Paulino, 2021. "Investing in the Sustainable Development Goals: Mobilization, channeling, and impact," Journal of International Business Policy, Palgrave Macmillan, vol. 4(1), pages 166-183, March.
    3. van Kooten, G. Cornelis, 2017. "Forest carbon offsets and carbon emissions trading: Problems of contracting," Forest Policy and Economics, Elsevier, vol. 75(C), pages 83-88.
    4. Ipsita Das & Thomas Klug & P. P. Krishnapriya & Victoria Plutshack & Rajah Saparapa & Stephanie Scott & Erin Sills & Njeri Kara & Subhrendu K. Pattanayak & Marc Jeuland, 2023. "Frameworks, methods and evidence connecting modern domestic energy services and gender empowerment," Nature Energy, Nature, vol. 8(5), pages 435-449, May.
    5. Shankar, Anita V. & Quinn, Ashlinn K. & Dickinson, Katherine L. & Williams, Kendra N. & Masera, Omar & Charron, Dana & Jack, Darby & Hyman, Jasmine & Pillarisetti, Ajay & Bailis, Rob & Kumar, Praveen , 2020. "Everybody stacks: Lessons from household energy case studies to inform design principles for clean energy transitions," Energy Policy, Elsevier, vol. 141(C).
    6. Gill-Wiehl, A. & Ray, I. & Kammen, D., 2021. "Is clean cooking affordable? A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    7. Thapa, Samir & Morrison, Mark & Parton, Kevin A, 2021. "Willingness to pay for domestic biogas plants and distributing carbon revenues to influence their purchase: A case study in Nepal," Energy Policy, Elsevier, vol. 158(C).
    8. Iwona Bisaga & Long Seng To, 2021. "Funding and Delivery Models for Modern Energy Cooking Services in Displacement Settings: A Review," Energies, MDPI, vol. 14(14), pages 1-19, July.
    9. Olivia Coldrey & Paul Lant & Peta Ashworth, 2023. "Elucidating Finance Gaps through the Clean Cooking Value Chain," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    10. Sovacool, Benjamin K., 2017. "Reviewing, Reforming, and Rethinking Global Energy Subsidies: Towards a Political Economy Research Agenda," Ecological Economics, Elsevier, vol. 135(C), pages 150-163.
    11. Jia, Jun-Jun & Zhu, Mengshu & Wei, Chu, 2022. "Household cooking in the context of carbon neutrality: A machine-learning-based review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Robert Bailis & Rudi Drigo & Adrian Ghilardi & Omar Masera, 2015. "The carbon footprint of traditional woodfuels," Nature Climate Change, Nature, vol. 5(3), pages 266-272, March.
    13. Axel Michaelowa, 2014. "Linking the CDM with domestic carbon markets," Climate Policy, Taylor & Francis Journals, vol. 14(3), pages 353-371, May.
    14. Susann Stritzke & Carlos Sakyi-Nyarko & Iwona Bisaga & Malcolm Bricknell & Jon Leary & Edward Brown, 2021. "Results-Based Financing (RBF) for Modern Energy Cooking Solutions: An Effective Driver for Innovation and Scale?," Energies, MDPI, vol. 14(15), pages 1-39, July.
    15. Matthew Leach & Chris Mullen & Jacquetta Lee & Bartosz Soltowski & Neal Wade & Stuart Galloway & William Coley & Shafiqa Keddar & Nigel Scott & Simon Batchelor, 2021. "Modelling the Costs and Benefits of Modern Energy Cooking Services—Methods and Case Studies," Energies, MDPI, vol. 14(12), pages 1-28, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon Batchelor & Ed Brown & Nigel Scott & Matthew Leach & Anna Clements & Jon Leary, 2022. "Mutual Support—Modern Energy Planning Inclusive of Cooking—A Review of Research into Action in Africa and Asia since 2018," Energies, MDPI, vol. 15(16), pages 1-29, August.
    2. Perros, T. & Allison, A.L. & Tomei, J. & Aketch, V. & Parikh, P., 2023. "Cleaning up the stack: Evaluating a clean cooking fuel stacking intervention in urban Kenya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Nikolas Schöne & Raluca Dumitrescu & Boris Heinz, 2023. "Techno-Economic Evaluation of Hydrogen-Based Cooking Solutions in Remote African Communities—The Case of Kenya," Energies, MDPI, vol. 16(7), pages 1-33, April.
    4. Rose, Julian & Bensch, Gunther & Munyehirwe, Anicet & Peters, Jörg, 2022. "The forgotten coal: Charcoal demand in sub-Saharan Africa," World Development Perspectives, Elsevier, vol. 25(C).
    5. Shupler, Matthew & O'Keefe, Mark & Puzzolo, Elisa & Nix, Emily & Anderson de Cuevas, Rachel & Mwitari, James & Gohole, Arthur & Sang, Edna & Čukić, Iva & Menya, Diana & Pope, Daniel, 2021. "Pay-as-you-go liquefied petroleum gas supports sustainable clean cooking in Kenyan informal urban settlement during COVID-19 lockdown," Applied Energy, Elsevier, vol. 292(C).
    6. Jeuland, Marc & Desai, Manish A. & Bair, Elizabeth F. & Mohideen Abdul Cader, Nafeesa & Natesan, Durairaj & Isaac, Wilson Jayakaran & Sambandam, Sankar & Balakrishnan, Kalpana & Thangavel, Gurusamy & , 2023. "A randomized trial of price subsidies for liquefied petroleum cooking gas among low-income households in rural India," World Development Perspectives, Elsevier, vol. 30(C).
    7. Babak Khavari & Camilo Ramirez & Marc Jeuland & Francesco Fuso Nerini, 2023. "A geospatial approach to understanding clean cooking challenges in sub-Saharan Africa," Nature Sustainability, Nature, vol. 6(4), pages 447-457, April.
    8. Shupler, Matthew & Mwitari, James & Gohole, Arthur & Anderson de Cuevas, Rachel & Puzzolo, Elisa & Čukić, Iva & Nix, Emily & Pope, Daniel, 2021. "COVID-19 impacts on household energy & food security in a Kenyan informal settlement: The need for integrated approaches to the SDGs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    9. Gould, Carlos F. & Jha, Shaily & Patnaik, Sasmita & Agrawal, Shalu & Zhang, Alice Tianbo & Saluja, Sonakshi & Nandan, Vagisha & Mani, Sunil & Urpelainen, Johannes, 2022. "Variability in the household use of cooking fuels: The importance of dishes cooked, non-cooking end uses, and seasonality in understanding fuel stacking in rural and urban slum communities in six nort," World Development, Elsevier, vol. 159(C).
    10. Munyehirwe, Anicet & Peters, Jörg & Sievert, Maximiliane & Bulte, Erwin H. & Fiala, Nathan, 2022. "Energy efficiency and local rebound effects: Theory and experimental evidence from Rwanda," Ruhr Economic Papers 934, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    11. Christian Gambardella & Michael Pahle & Wolf-Peter Schill, 2016. "Do Benefits from Dynamic Tariffing Rise? Welfare Effects of Real-Time Pricing under Carbon-Tax-Induced Variable Renewable Energy Supply," Discussion Papers of DIW Berlin 1621, DIW Berlin, German Institute for Economic Research.
    12. Argueyrolles, Robin & Delzeit, Ruth, 2022. "The interconnections between Fossil Fuel Subsidy Reforms and biofuels," Conference papers 333492, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    13. Rupayan Pal & Marcella Scrimitore & Ruichao Song, 2023. "Externalities, entry bias, and optimal subsidy policy for cleaner environment," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 25(1), pages 90-122, February.
    14. Kooten, G. Cornelis Van, 2022. "The Impact of Carbon on Optimal Forest Rotation Ages: An Application to Coastal Forests in British Columbia," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322612, Agricultural and Applied Economics Association.
    15. Zhishuang Zhu & Hua Liao, 2019. "Do subsidies improve the financial performance of renewable energy companies? Evidence from China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(1), pages 241-256, January.
    16. Yabei Zhang, 2022. "Accelerating Access to Clean Cooking Will Require a Heart-Head-and-Hands Approach," Development, Palgrave Macmillan;Society for International Deveopment, vol. 65(1), pages 59-62, March.
    17. repec:zbw:rwirep:0538 is not listed on IDEAS
    18. Alina E. Kozhukhova & Stephanus P. du Preez & Dmitri G. Bessarabov, 2021. "Catalytic Hydrogen Combustion for Domestic and Safety Applications: A Critical Review of Catalyst Materials and Technologies," Energies, MDPI, vol. 14(16), pages 1-32, August.
    19. Yang, Aoxi & Wang, Yahui, 2023. "Transition of household cooking energy in China since the 1980s," Energy, Elsevier, vol. 270(C).
    20. Lu, Zhou & Mahalik, Mantu Kumar & Mahalik, Hrushikesh & Zhao, Rui, 2022. "The moderating effects of democracy and technology adoption on the relationship between trade liberalisation and carbon emissions," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    21. Zhang, M.M. & Zhou, D.Q. & Zhou, P. & Chen, H.T., 2017. "Optimal design of subsidy to stimulate renewable energy investments: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 873-883.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5992-:d:1217924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.