IDEAS home Printed from
   My bibliography  Save this article

Energy management on industrial parks in Flanders


  • Maes, Tom
  • Van Eetvelde, Greet
  • De Ras, Evelien
  • Block, Chantal
  • Pisman, Ann
  • Verhofstede, Bjorn
  • Vandendriessche, Frederik
  • Vandevelde, Lieven


In the race against climate change, aiming for low-carbon competitiveness, Flanders has initiated a carbon neutrality strategy on industrial parks, building towards energy efficient buildings and processes, acting as a stimulus for the production and consumption of green electricity. However, premises and internal process optimisation on industrial parks is not considered sufficient to limit greenhouse emissions in Flanders. Structural transition is called for, aiming for industrial clustering and energy autonomy based on renewables. Therefore, the concept of industrial symbiosis is analysed to determine how it could improve the energy-related carbon management on industrial parks. This article explores the literature on industrial symbiosis and eco-industrial parks searching for specific energy strategies, and is illustrated with case studies. Energy management on industrial parks can be integrated in the entire development process and park management. Maximising efficiency is a promising local optimisation issue, in which business should be engaged, stimulated and facilitated. By clustering buildings and processes, by energy exchange, collective production and joint contracting of energy services, local synergies can be intensified. Yet, uncertainty and variability in time of energy consumption can keep developers from tailoring industrial park design and utilities. Instead flexibility and solidity could be gained, and the offer of business space could be diversified, supported by a persevering issuing procedure to join similar and matching energy profiles. Energy management on industrial parks in Flanders has only recently started but is expected to gain professionalism. However further research is needed on this flexible design and thermal planning.

Suggested Citation

  • Maes, Tom & Van Eetvelde, Greet & De Ras, Evelien & Block, Chantal & Pisman, Ann & Verhofstede, Bjorn & Vandendriessche, Frederik & Vandevelde, Lieven, 2011. "Energy management on industrial parks in Flanders," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1988-2005, May.
  • Handle: RePEc:eee:rensus:v:15:y:2011:i:4:p:1988-2005

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Jiayi, Huang & Chuanwen, Jiang & Rong, Xu, 2008. "A review on distributed energy resources and MicroGrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2472-2483, December.
    2. Aro, Teuvo, 2009. "Preconditions and tools for cross-sectoral regional industrial GHG and energy efficiency policy--A Finnish standpoint," Energy Policy, Elsevier, vol. 37(7), pages 2722-2733, July.
    3. Tudor, Terry & Adam, Emma & Bates, Margaret, 2007. "Drivers and limitations for the successful development and functioning of EIPs (eco-industrial parks): A literature review," Ecological Economics, Elsevier, vol. 61(2-3), pages 199-207, March.
    4. Ayres, Robert U., 2004. "On the life cycle metaphor: where ecology and economics diverge," Ecological Economics, Elsevier, vol. 48(4), pages 425-438, April.
    5. Chae, Song Hwa & Kim, Sang Hun & Yoon, Sung-Geun & Park, Sunwon, 2010. "Optimization of a waste heat utilization network in an eco-industrial park," Applied Energy, Elsevier, vol. 87(6), pages 1978-1988, June.
    6. Neves, Ana Rita & Leal, VĂ­tor, 2010. "Energy sustainability indicators for local energy planning: Review of current practices and derivation of a new framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2723-2735, December.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Cho, Young Sang & Kim, Jeom Han & Hong, Seong Uk & Kim, Yuri, 2012. "LCA application in the optimum design of high rise steel structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3146-3153.
    2. Liu, Lingxuan & Zhang, Bing & Bi, Jun & Wei, Qi & He, Pan, 2012. "The greenhouse gas mitigation of industrial parks in China: A case study of Suzhou Industrial Park," Energy Policy, Elsevier, vol. 46(C), pages 301-307.
    3. Zhang, Bing J. & Tang, Qiao Q. & Zhao, Yue & Chen, Yu Q. & Chen, Qing L. & Floudas, Christodoulos A., 2018. "Multi-level energy integration between units, plants and sites for natural gas industrial parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 1-15.
    4. Jung, Seok & An, Kyoung-Jin & Dodbiba, Gjergj & Fujita, Toyohisa, 2012. "Regional energy-related carbon emission characteristics and potential mitigation in eco-industrial parks in South Korea: Logarithmic mean Divisia index analysis based on the Kaya identity," Energy, Elsevier, vol. 46(1), pages 231-241.
    5. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Nor, Khalil M.D. & Khoshnoudi, Masoumeh, 2016. "Using fuzzy multiple criteria decision making approaches for evaluating energy saving technologies and solutions in five star hotels: A new hierarchical framework," Energy, Elsevier, vol. 117(P1), pages 131-148.
    6. Timmerman, Jonas & Vandevelde, Lieven & Van Eetvelde, Greet, 2014. "Towards low carbon business park energy systems: Classification of techno-economic energy models," Energy, Elsevier, vol. 75(C), pages 68-80.
    7. Huang, Beijia & Jiang, Ping & Wang, Shaoping & Zhao, Juan & Wu, Luchao, 2016. "Low carbon innovation and practice in Caohejing High-Tech Industrial Park of Shanghai," International Journal of Production Economics, Elsevier, vol. 181(PB), pages 367-373.
    8. Pan, Ming & Sikorski, Janusz & Akroyd, Jethro & Mosbach, Sebastian & Lau, Raymond & Kraft, Markus, 2016. "Design technologies for eco-industrial parks: From unit operations to processes, plants and industrial networks," Applied Energy, Elsevier, vol. 175(C), pages 305-323.
    9. Oh, Se-Young & Binns, Michael & Yeo, Yeong-Koo & Kim, Jin-Kuk, 2014. "Improving energy efficiency for local energy systems," Applied Energy, Elsevier, vol. 131(C), pages 26-39.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:15:y:2011:i:4:p:1988-2005. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.