IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v88y2018icp1-15.html
   My bibliography  Save this article

Multi-level energy integration between units, plants and sites for natural gas industrial parks

Author

Listed:
  • Zhang, Bing J.
  • Tang, Qiao Q.
  • Zhao, Yue
  • Chen, Yu Q.
  • Chen, Qing L.
  • Floudas, Christodoulos A.

Abstract

Natural gas industrial parks are composed of raw natural gas refining plants, urea plants and power plants. The processes of natural gas refining and utilization in industrial parks are energy-intensive and involve complicated mass and energy networks. This study concentrates on heat and material stream integration for sustainable energy utilization in natural gas industrial parks. Energy integration of industrial parks is reviewed and a mixed integer non-linear programming framework is presented to minimize the total annual cost for the retrofitting of energy integration across plants in natural gas industrial parks. The mathematical framework combines the optimization models of energy-intensive processes, power plant operation and a new heat exchanger network design using some key variables. Total site analysis is proposed for a natural gas industrial park to obtain energy-intensive processes with energy saving potential and determine the process streams for energy integration across plants. The mathematical framework is then applied to the natural gas industrial park and can be solved using the deterministic global optimization solver in a reasonable solution time. The results demonstrate that the static investment payback period is less than two months and the total hot utility decreases by 30.5% through the energy retrofit of the entire natural gas industrial park.

Suggested Citation

  • Zhang, Bing J. & Tang, Qiao Q. & Zhao, Yue & Chen, Yu Q. & Chen, Qing L. & Floudas, Christodoulos A., 2018. "Multi-level energy integration between units, plants and sites for natural gas industrial parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 1-15.
  • Handle: RePEc:eee:rensus:v:88:y:2018:i:c:p:1-15
    DOI: 10.1016/j.rser.2018.02.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118300352
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.02.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hanak, Dawid P. & Biliyok, Chechet & Manovic, Vasilije, 2015. "Efficiency improvements for the coal-fired power plant retrofit with CO2 capture plant using chilled ammonia process," Applied Energy, Elsevier, vol. 151(C), pages 258-272.
    2. Wen, Zongguo & Xu, Jinjing & Lee, Jason C.K. & Ren, Cuiping, 2017. "Symbiotic technology-based potential for energy saving: A case study in China's iron and steel industrial parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1303-1311.
    3. Matsuda, Kazuo & Hirochi, Yoshiichi & Kurosaki, Daisuke & Kado, Yosuke, 2015. "Area-wide energy saving program in a large industrial area," Energy, Elsevier, vol. 90(P1), pages 89-94.
    4. Perry, Simon & Klemeš, Jiří & Bulatov, Igor, 2008. "Integrating waste and renewable energy to reduce the carbon footprint of locally integrated energy sectors," Energy, Elsevier, vol. 33(10), pages 1489-1497.
    5. Akpomiemie, Mary O. & Smith, Robin, 2016. "Retrofit of heat exchanger networks with heat transfer enhancement based on an area ratio approach," Applied Energy, Elsevier, vol. 165(C), pages 22-35.
    6. Hackl, Roman & Andersson, Eva & Harvey, Simon, 2011. "Targeting for energy efficiency and improved energy collaboration between different companies using total site analysis (TSA)," Energy, Elsevier, vol. 36(8), pages 4609-4615.
    7. Zhang, Chuan & Zhou, Li & Chhabra, Pulkit & Garud, Sushant S. & Aditya, Kevin & Romagnoli, Alessandro & Comodi, Gabriele & Dal Magro, Fabio & Meneghetti, Antonella & Kraft, Markus, 2016. "A novel methodology for the design of waste heat recovery network in eco-industrial park using techno-economic analysis and multi-objective optimization," Applied Energy, Elsevier, vol. 184(C), pages 88-102.
    8. Liew, Peng Yen & Lim, Jeng Shiun & Wan Alwi, Sharifah Rafidah & Abdul Manan, Zainuddin & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2014. "A retrofit framework for Total Site heat recovery systems," Applied Energy, Elsevier, vol. 135(C), pages 778-790.
    9. Hackl, Roman & Harvey, Simon, 2013. "Applying exergy and total site analysis for targeting refrigeration shaft power in industrial clusters," Energy, Elsevier, vol. 55(C), pages 5-14.
    10. Agha, Mujtaba H. & Thery, Raphaele & Hetreux, Gilles & Hait, Alain & Le Lann, Jean Marc, 2010. "Integrated production and utility system approach for optimizing industrial unit operations," Energy, Elsevier, vol. 35(2), pages 611-627.
    11. Gu, Wugen & Huang, Yuqing & Wang, Kan & Zhang, Bingjian & Chen, Qinglin & Hui, Chi-Wai, 2014. "Comparative analysis and evaluation of three crude oil vacuum distillation processes for process selection," Energy, Elsevier, vol. 76(C), pages 559-571.
    12. Matsuda, Kazuo & Hirochi, Yoshiichi & Tatsumi, Hiroyuki & Shire, Tim, 2009. "Applying heat integration total site based pinch technology to a large industrial area in Japan to further improve performance of highly efficient process plants," Energy, Elsevier, vol. 34(10), pages 1687-1692.
    13. Gewald, Daniela & Siokos, Konstantinos & Karellas, Sotirios & Spliethoff, Hartmut, 2012. "Waste heat recovery from a landfill gas-fired power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1779-1789.
    14. Zhang, B.J. & Li, J. & Zhang, Z.L. & Wang, K. & Chen, Q.L., 2016. "Simultaneous design of heat exchanger network for heat integration using hot direct discharges/feeds between process plants," Energy, Elsevier, vol. 109(C), pages 400-411.
    15. Maes, Tom & Van Eetvelde, Greet & De Ras, Evelien & Block, Chantal & Pisman, Ann & Verhofstede, Bjorn & Vandendriessche, Frederik & Vandevelde, Lieven, 2011. "Energy management on industrial parks in Flanders," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1988-2005, May.
    16. Dong, Xiucheng & Pi, Guanglin & Ma, Zhengwei & Dong, Cong, 2017. "The reform of the natural gas industry in the PR of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 582-593.
    17. Ochoa-Estopier, Lluvia M. & Jobson, Megan & Smith, Robin, 2014. "The use of reduced models for design and optimisation of heat-integrated crude oil distillation systems," Energy, Elsevier, vol. 75(C), pages 5-13.
    18. Ruth Misener & Christodoulos Floudas, 2014. "ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations," Journal of Global Optimization, Springer, vol. 59(2), pages 503-526, July.
    19. Zhou, Li & Pan, Ming & Sikorski, Janusz J. & Garud, Sushant & Aditya, Leonardus K. & Kleinelanghorst, Martin J. & Karimi, Iftekhar A. & Kraft, Markus, 2017. "Towards an ontological infrastructure for chemical process simulation and optimization in the context of eco-industrial parks," Applied Energy, Elsevier, vol. 204(C), pages 1284-1298.
    20. Hackl, Roman & Harvey, Simon, 2015. "From heat integration targets toward implementation – A TSA (total site analysis)-based design approach for heat recovery systems in industrial clusters," Energy, Elsevier, vol. 90(P1), pages 163-172.
    21. Zhang, Chuan & Romagnoli, Alessandro & Zhou, Li & Kraft, Markus, 2017. "Knowledge management of eco-industrial park for efficient energy utilization through ontology-based approach," Applied Energy, Elsevier, vol. 204(C), pages 1412-1421.
    22. Feng, Xiao & Pu, Jing & Yang, Junkun & Chu, Khim Hoong, 2011. "Energy recovery in petrochemical complexes through heat integration retrofit analysis," Applied Energy, Elsevier, vol. 88(5), pages 1965-1982, May.
    23. Liew, Peng Yen & Theo, Wai Lip & Wan Alwi, Sharifah Rafidah & Lim, Jeng Shiun & Abdul Manan, Zainuddin & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2017. "Total Site Heat Integration planning and design for industrial, urban and renewable systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 964-985.
    24. Pan, Ming & Aziz, Farah & Li, Baohong & Perry, Simon & Zhang, Nan & Bulatov, Igor & Smith, Robin, 2016. "Application of optimal design methodologies in retrofitting natural gas combined cycle power plants with CO2 capture," Applied Energy, Elsevier, vol. 161(C), pages 695-706.
    25. Mofarahi, Masoud & Khojasteh, Yaser & Khaledi, Hiwa & Farahnak, Arsalan, 2008. "Design of CO2 absorption plant for recovery of CO2 from flue gases of gas turbine," Energy, Elsevier, vol. 33(8), pages 1311-1319.
    26. Boldyryev, Stanislav & Varbanov, Petar Sabev, 2015. "Low potential heat utilization of bromine plant via integration on process and Total Site levels," Energy, Elsevier, vol. 90(P1), pages 47-55.
    27. Pan, Ming & Bulatov, Igor & Smith, Robin, 2016. "Improving heat recovery in retrofitting heat exchanger networks with heat transfer intensification, pressure drop constraint and fouling mitigation," Applied Energy, Elsevier, vol. 161(C), pages 611-626.
    28. Pan, Ming & Sikorski, Janusz & Akroyd, Jethro & Mosbach, Sebastian & Lau, Raymond & Kraft, Markus, 2016. "Design technologies for eco-industrial parks: From unit operations to processes, plants and industrial networks," Applied Energy, Elsevier, vol. 175(C), pages 305-323.
    29. Karellas, S. & Leontaritis, A.-D. & Panousis, G. & Bellos, E. & Kakaras, E., 2013. "Energetic and exergetic analysis of waste heat recovery systems in the cement industry," Energy, Elsevier, vol. 58(C), pages 147-156.
    30. Stijepovic, Mirko Z. & Linke, Patrick, 2011. "Optimal waste heat recovery and reuse in industrial zones," Energy, Elsevier, vol. 36(7), pages 4019-4031.
    31. Hackl, Roman & Harvey, Simon, 2013. "Framework methodology for increased energy efficiency and renewable feedstock integration in industrial clusters," Applied Energy, Elsevier, vol. 112(C), pages 1500-1509.
    32. Karimkashi, Shervin & Amidpour, Majid, 2012. "Total site energy improvement using R-curve concept," Energy, Elsevier, vol. 40(1), pages 329-340.
    33. Wang, Yufei & Chang, Chenglin & Feng, Xiao, 2015. "A systematic framework for multi-plants Heat Integration combining Direct and Indirect Heat Integration methods," Energy, Elsevier, vol. 90(P1), pages 56-67.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Kai & Zhao, Li & Tang, Qiao Q. & Chen, Qing L. & He, Chang & Zhang, Bing J., 2024. "A novel optimization framework integrating multiple initialization, automatic topologization and MINLP reduction to accelerate large-scale heat exchanger network synthesis," Energy, Elsevier, vol. 307(C).
    2. Li, Ke & Yang, Rui & He, Xuanfang, 2024. "Realizing low-carbon development of industrial parks in China: Model construction and its application," Energy, Elsevier, vol. 301(C).
    3. Misrol, Mohd Arif & Wan Alwi, Sharifah Rafidah & Lim, Jeng Shiun & Manan, Zainuddin Abd, 2022. "Optimising renewable energy at the eco-industrial park: A mathematical modelling approach," Energy, Elsevier, vol. 261(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    2. Liew, Peng Yen & Theo, Wai Lip & Wan Alwi, Sharifah Rafidah & Lim, Jeng Shiun & Abdul Manan, Zainuddin & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2017. "Total Site Heat Integration planning and design for industrial, urban and renewable systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 964-985.
    3. Liew, Peng Yen & Wan Alwi, Sharifah Rafidah & Ho, Wai Shin & Abdul Manan, Zainuddin & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2018. "Multi-period energy targeting for Total Site and Locally Integrated Energy Sectors with cascade Pinch Analysis," Energy, Elsevier, vol. 155(C), pages 370-380.
    4. Jin, Yuhui & Chang, Chuei-Tin & Li, Shaojun & Jiang, Da, 2018. "On the use of risk-based Shapley values for cost sharing in interplant heat integration programs," Applied Energy, Elsevier, vol. 211(C), pages 904-920.
    5. Chang, Hao-Hsuan & Chang, Chuei-Tin & Li, Bao-Hong, 2018. "Game-theory based optimization strategies for stepwise development of indirect interplant heat integration plans," Energy, Elsevier, vol. 148(C), pages 90-111.
    6. Tarighaleslami, Amir H. & Walmsley, Timothy G. & Atkins, Martin J. & Walmsley, Michael R.W. & Liew, Peng Yen & Neale, James R., 2017. "A Unified Total Site Heat Integration targeting method for isothermal and non-isothermal utilities," Energy, Elsevier, vol. 119(C), pages 10-25.
    7. Hackl, Roman & Harvey, Simon, 2013. "Framework methodology for increased energy efficiency and renewable feedstock integration in industrial clusters," Applied Energy, Elsevier, vol. 112(C), pages 1500-1509.
    8. Liew, Peng Yen & Walmsley, Timothy Gordon & Wan Alwi, Sharifah Rafidah & Abdul Manan, Zainuddin & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2016. "Integrating district cooling systems in Locally Integrated Energy Sectors through Total Site Heat Integration," Applied Energy, Elsevier, vol. 184(C), pages 1350-1363.
    9. Song, Runrun & Chang, Chenglin & Tang, Qikui & Wang, Yufei & Feng, Xiao & El-Halwagi, Mahmoud M., 2017. "The implementation of inter-plant heat integration among multiple plants. Part II: The mathematical model," Energy, Elsevier, vol. 135(C), pages 382-393.
    10. Hür Bütün & Ivan Kantor & François Maréchal, 2019. "Incorporating Location Aspects in Process Integration Methodology," Energies, MDPI, vol. 12(17), pages 1-45, August.
    11. Faramarzi, Simin & Tahouni, Nassim & Panjeshahi, M. Hassan, 2022. "Pressure drop optimization in Total Site targeting - A more realistic approach to energy- capital trade-off," Energy, Elsevier, vol. 251(C).
    12. Matsuda, Kazuo & Hirochi, Yoshiichi & Kurosaki, Daisuke & Kado, Yosuke, 2015. "Area-wide energy saving program in a large industrial area," Energy, Elsevier, vol. 90(P1), pages 89-94.
    13. Varbanov, Petar Sabev & Fodor, Zsófia & Klemeš, Jiří Jaromír, 2012. "Total Site targeting with process specific minimum temperature difference (ΔTmin)," Energy, Elsevier, vol. 44(1), pages 20-28.
    14. Nguyen, Tuong-Van & Fülöp, Tamás Gábor & Breuhaus, Peter & Elmegaard, Brian, 2014. "Life performance of oil and gas platforms: Site integration and thermodynamic evaluation," Energy, Elsevier, vol. 73(C), pages 282-301.
    15. Song, Runrun & Tang, Qikui & Wang, Yufei & Feng, Xiao & El-Halwagi, Mahmoud M., 2017. "The implementation of inter-plant heat integration among multiple plants. Part I: A novel screening algorithm," Energy, Elsevier, vol. 140(P1), pages 1018-1029.
    16. Jamaluddin, Khairulnadzmi & Wan Alwi, Sharifah Rafidah & Abd Manan, Zainuddin & Hamzah, Khaidzir & Klemeš, Jiří Jaromír, 2022. "Design of Total Site-Integrated TrigenerationSystem using trigeneration cascade analysis considering transmission losses and sensitivity analysis," Energy, Elsevier, vol. 252(C).
    17. Walmsley, Timothy G. & Atkins, Martin J. & Walmsley, Michael R.W. & Philipp, Matthias & Peesel, Ron-Hendrik, 2018. "Process and utility systems integration and optimisation for ultra-low energy milk powder production," Energy, Elsevier, vol. 146(C), pages 67-81.
    18. Liu, K. & Zhang, B.J. & Zhang, Z.L. & Chen, Q.L., 2015. "A new double flash process and heat integration for better energy utilization of toluene disproportionation," Energy, Elsevier, vol. 89(C), pages 168-177.
    19. Boldyryev, Stanislav & Varbanov, Petar Sabev, 2015. "Low potential heat utilization of bromine plant via integration on process and Total Site levels," Energy, Elsevier, vol. 90(P1), pages 47-55.
    20. Wang, Yufei & Chang, Chenglin & Feng, Xiao, 2015. "A systematic framework for multi-plants Heat Integration combining Direct and Indirect Heat Integration methods," Energy, Elsevier, vol. 90(P1), pages 56-67.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:88:y:2018:i:c:p:1-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.