IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v141y2017icp1555-1568.html
   My bibliography  Save this article

Synthesis of energy efficient chilled and cooling water network by integrating waste heat recovery refrigeration system

Author

Listed:
  • Chan, Wai Mun
  • Leong, Yik Teeng
  • Foo, Ji Jinn
  • Chew, Irene Mei Leng

Abstract

Vapor compression refrigeration system (VCRS) is the conventional technology that uses electricity to generate chilled water for process cooling and air conditioning. On the other hand, there are various alternative green technologies that use waste heat to drive refrigeration system. In current industrial practices, abundant amounts of waste heat in the form of steam, hot water and flue gas remain untapped and are wasted. Absorption refrigeration system (ARS) is the alternative green technology that could recover those waste heats to produce cooling utility. In previous works, the integration of chilled and cooling water network within an Eco-Industrial Park (EIP) has been proven to be more cost effective than individual plant. However, the network is configured with VCRS which is an energy intensive technology. In this paper, ARS is integrated with VCRS to synthesize an energy efficient chilled and cooling water network using superstructure optimization approach. To further enhance energy efficiency, secondary waste heat recovery is proposed. Results shown the proposed ARS-VCRS integrated network has reduced the CO2 emission and the overall costs by 53% and 21% compared to VCRS alone. The minimum cooling duty and waste heat in the EIP for ARS-VCRS installation are determined through sensitivity analysis.

Suggested Citation

  • Chan, Wai Mun & Leong, Yik Teeng & Foo, Ji Jinn & Chew, Irene Mei Leng, 2017. "Synthesis of energy efficient chilled and cooling water network by integrating waste heat recovery refrigeration system," Energy, Elsevier, vol. 141(C), pages 1555-1568.
  • Handle: RePEc:eee:energy:v:141:y:2017:i:c:p:1555-1568
    DOI: 10.1016/j.energy.2017.11.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217319059
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.11.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Chuan & Zhou, Li & Chhabra, Pulkit & Garud, Sushant S. & Aditya, Kevin & Romagnoli, Alessandro & Comodi, Gabriele & Dal Magro, Fabio & Meneghetti, Antonella & Kraft, Markus, 2016. "A novel methodology for the design of waste heat recovery network in eco-industrial park using techno-economic analysis and multi-objective optimization," Applied Energy, Elsevier, vol. 184(C), pages 88-102.
    2. Al-Alili, A. & Islam, M.D. & Kubo, I. & Hwang, Y. & Radermacher, R., 2012. "Modeling of a solar powered absorption cycle for Abu Dhabi," Applied Energy, Elsevier, vol. 93(C), pages 160-167.
    3. Srikhirin, Pongsid & Aphornratana, Satha & Chungpaibulpatana, Supachart, 2001. "A review of absorption refrigeration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 343-372, December.
    4. Chae, Song Hwa & Kim, Sang Hun & Yoon, Sung-Geun & Park, Sunwon, 2010. "Optimization of a waste heat utilization network in an eco-industrial park," Applied Energy, Elsevier, vol. 87(6), pages 1978-1988, June.
    5. Han, Wei & Sun, Liuli & Zheng, Danxing & Jin, Hongguang & Ma, Sijun & Jing, Xuye, 2013. "New hybrid absorption–compression refrigeration system based on cascade use of mid-temperature waste heat," Applied Energy, Elsevier, vol. 106(C), pages 383-390.
    6. Kwak, Dong-Hun & Binns, Michael & Kim, Jin-Kuk, 2014. "Integrated design and optimization of technologies for utilizing low grade heat in process industries," Applied Energy, Elsevier, vol. 131(C), pages 307-322.
    7. Chan, K. T. & Yu, F. W., 2002. "Applying condensing-temperature control in air-cooled reciprocating water chillers for energy efficiency," Applied Energy, Elsevier, vol. 72(3-4), pages 565-581, July.
    8. Trygg, Louise & Amiri, Shahnaz, 2007. "European perspective on absorption cooling in a combined heat and power system - A case study of energy utility and industries in Sweden," Applied Energy, Elsevier, vol. 84(12), pages 1319-1337, December.
    9. Foo, Dominic C.Y. & Ng, Denny K.S. & Leong, Malwynn K.Y. & Chew, Irene M.L. & Subramaniam, Mahendran & Aziz, Ramlan & Lee, Jui-Yuan, 2014. "Targeting and design of chilled water network," Applied Energy, Elsevier, vol. 134(C), pages 589-599.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Hao & Li, Hong & Geng, Xueli & Gao, Xin, 2023. "Techno-economic and energetic assessment of an innovative energy-saving separation process for electronic-grade acetone purification," Energy, Elsevier, vol. 282(C).
    2. Yijian He & Yufu Zheng & Jianguang Zhao & Qifei Chen & Lunyuan Zhang, 2024. "Study of a Novel Hybrid Refrigeration System, with Natural Refrigerants and Ultra-Low Carbon Emissions, for Air Conditioning," Energies, MDPI, vol. 17(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new waste heat district heating system with combined heat and power (CHP) based on ejector heat exchangers and absorption heat pumps," Energy, Elsevier, vol. 69(C), pages 516-524.
    2. Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
    3. Wang, Hai & Wang, Haiying & Zhu, Tong & Deng, Wanli, 2017. "A novel model for steam transportation considering drainage loss in pipeline networks," Applied Energy, Elsevier, vol. 188(C), pages 178-189.
    4. Oluleye, Gbemi & Jobson, Megan & Smith, Robin & Perry, Simon J., 2016. "Evaluating the potential of process sites for waste heat recovery," Applied Energy, Elsevier, vol. 161(C), pages 627-646.
    5. Luca Fraccascia & Vahid Yazdanpanah & Guido Capelleveen & Devrim Murat Yazan, 2021. "Energy-based industrial symbiosis: a literature review for circular energy transition," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 4791-4825, April.
    6. Jayasekara, Saliya & Halgamuge, Saman K., 2014. "A combined effect absorption chiller for enhanced performance of combined cooling heating and power systems," Applied Energy, Elsevier, vol. 127(C), pages 239-248.
    7. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    8. Han, Wei & Chen, Qiang & Sun, Liuli & Ma, Sijun & Zhao, Ting & Zheng, Danxing & Jin, Hongguang, 2014. "Experimental studies on a combined refrigeration/power generation system activated by low-grade heat," Energy, Elsevier, vol. 74(C), pages 59-66.
    9. Siddiqui, M.U. & Said, S.A.M., 2015. "A review of solar powered absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 93-115.
    10. Liu, Siyao & Cui, Chengtian & He, Jie & Sun, Jinsheng, 2018. "Feasibility assessment of a novel refrigeration FCC gas plant driven by self waste heat," Energy, Elsevier, vol. 145(C), pages 356-366.
    11. Wu, Wei & Shi, Wenxing & Wang, Jian & Wang, Baolong & Li, Xianting, 2016. "Experimental investigation on NH3–H2O compression-assisted absorption heat pump (CAHP) for low temperature heating under lower driving sources," Applied Energy, Elsevier, vol. 176(C), pages 258-271.
    12. Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
    13. Chen, Yi & Han, Wei & Jin, Hongguang, 2017. "Proposal and analysis of a novel heat-driven absorption–compression refrigeration system at low temperatures," Applied Energy, Elsevier, vol. 185(P2), pages 2106-2116.
    14. Galvan-Cara, Aldwin-Lois & Graells, Moisès & Espuña, Antonio, 2022. "Application of Industrial Symbiosis principles to the management of utility networks," Applied Energy, Elsevier, vol. 305(C).
    15. Mehrpooya, Mehdi & Ghorbani, Bahram & Manizadeh, Ali, 2020. "Cryogenic biogas upgrading process using solar energy (process integration, development, and energy analysis)," Energy, Elsevier, vol. 203(C).
    16. Datas, A. & Ramos, A. & del Cañizo, C., 2019. "Techno-economic analysis of solar PV power-to-heat-to-power storage and trigeneration in the residential sector," Applied Energy, Elsevier, vol. 256(C).
    17. Wang, Mingtao & Zhang, Juan & Liu, Huanwei, 2022. "Thermodynamic analysis and optimization of two low-grade energy driven transcritical CO2 combined cooling, heating and power systems," Energy, Elsevier, vol. 249(C).
    18. Jayasekara, Saliya & Halgamuge, Saman K., 2013. "Mathematical modeling and experimental verification of an absorption chiller including three dimensional temperature and concentration distributions," Applied Energy, Elsevier, vol. 106(C), pages 232-242.
    19. Tian, Xueyu & You, Fengqi, 2019. "Carbon-neutral hybrid energy systems with deep water source cooling, biomass heating, and geothermal heat and power," Applied Energy, Elsevier, vol. 250(C), pages 413-432.
    20. Ghorbani, Bahram & Mehrpooya, Mehdi & Ghasemzadeh, Hossein, 2018. "Investigation of a hybrid water desalination, oxy-fuel power generation and CO2 liquefaction process," Energy, Elsevier, vol. 158(C), pages 1105-1119.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:141:y:2017:i:c:p:1555-1568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.