IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v138y2021ics1364032120309539.html
   My bibliography  Save this article

Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience and indoor air quality

Author

Listed:
  • Ahmed, Tariq
  • Kumar, Prashant
  • Mottet, Laetitia

Abstract

In buildings, energy is primarily consumed by mechanical air conditioning systems. Low energy alternatives, such as natural ventilation, are needed. However, they need to be able to cope with increasing heatwaves and pollution, particularly in warm climates. This review paper looked at the ability of natural ventilation to provide adequate thermal comfort, resilience against heatwaves, and good Indoor Air Quality in warm climates. Single-sided ventilation demonstrates the poorest ability to provide thermal comfort, while cross ventilation highlights better performance in terms of reducing indoor air temperatures compared to outdoor. However, windcatchers and solar chimneys displayed even better performance by producing relatively high ventilation rates. During heatwaves and future climatic scenarios, natural ventilation, by cross-ventilation, was not able to meet internal thermal comfort standards. A potential low energy solution could be combining solar chimneys or windcatchers with water evaporation cooling. A critical synthesis of the literature suggests that these systems can generate high ventilation rates and keep indoor temperatures around 8 °C cooler than outdoor temperatures in warm weather (>35 °C). However, no studies were found testing these systems against future climate scenarios, and further studies are recommended. The literature supported natural ventilation being effective in removing pollution generated indoors due to adequate ventilation rates. However, using unfiltered natural ventilation for areas with high outdoor pollution can increase the indoor deposition of harmful particulate matter. With increasing air pollution, further studies are urgently required to investigate filter enabled natural ventilation, particularly with solar chimney/windcatcher incorporated.

Suggested Citation

  • Ahmed, Tariq & Kumar, Prashant & Mottet, Laetitia, 2021. "Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience and indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
  • Handle: RePEc:eee:rensus:v:138:y:2021:i:c:s1364032120309539
    DOI: 10.1016/j.rser.2020.110669
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120309539
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110669?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bouchahm, Yasmina & Bourbia, Fatiha & Belhamri, Azeddine, 2011. "Performance analysis and improvement of the use of wind tower in hot dry climate," Renewable Energy, Elsevier, vol. 36(3), pages 898-906.
    2. Shi, Long & Zhang, Guomin & Yang, Wei & Huang, Dongmei & Cheng, Xudong & Setunge, Sujeeva, 2018. "Determining the influencing factors on the performance of solar chimney in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 223-238.
    3. Miyazaki, T. & Akisawa, A. & Kashiwagi, T., 2006. "The effects of solar chimneys on thermal load mitigation of office buildings under the Japanese climate," Renewable Energy, Elsevier, vol. 31(7), pages 987-1010.
    4. Montazeri, H. & Montazeri, F., 2018. "CFD simulation of cross-ventilation in buildings using rooftop wind-catchers: Impact of outlet openings," Renewable Energy, Elsevier, vol. 118(C), pages 502-520.
    5. Arce, J. & Jiménez, M.J. & Guzmán, J.D. & Heras, M.R. & Alvarez, G. & Xamán, J., 2009. "Experimental study for natural ventilation on a solar chimney," Renewable Energy, Elsevier, vol. 34(12), pages 2928-2934.
    6. Vargas-López, R. & Xamán, J. & Hernández-Pérez, I. & Arce, J. & Zavala-Guillén, I. & Jiménez, M.J. & Heras, M.R., 2019. "Mathematical models of solar chimneys with a phase change material for ventilation of buildings: A review using global energy balance," Energy, Elsevier, vol. 170(C), pages 683-708.
    7. Heracleous, Chryso & Michael, Aimilios, 2018. "Assessment of overheating risk and the impact of natural ventilation in educational buildings of Southern Europe under current and future climatic conditions," Energy, Elsevier, vol. 165(PB), pages 1228-1239.
    8. Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard Barry & Tong, Zheming, 2016. "Energy Saving Potential of Natural Ventilation in China: The Impact of Ambient Air Pollution," Scholarly Articles 27733689, Harvard University Department of Economics.
    9. Manzano-Agugliaro, Francisco & Montoya, Francisco G. & Sabio-Ortega, Andrés & García-Cruz, Amós, 2015. "Review of bioclimatic architecture strategies for achieving thermal comfort," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 736-755.
    10. Saadatian, Omidreza & Haw, Lim Chin & Sopian, K. & Sulaiman, M.Y., 2012. "Review of windcatcher technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1477-1495.
    11. Chenari, Behrang & Dias Carrilho, João & Gameiro da Silva, Manuel, 2016. "Towards sustainable, energy-efficient and healthy ventilation strategies in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1426-1447.
    12. Haghighi, A.P. & Pakdel, S.H. & Jafari, A., 2016. "A study of a wind catcher assisted adsorption cooling channel for natural cooling of a 2-storey building," Energy, Elsevier, vol. 102(C), pages 118-138.
    13. Shiv Prasad & Dhanya M S, 2011. "Air Quality and Biofuels," Chapters, in: Marco Aurelio Dos Santos Bernardes (ed.), Environmental Impact of Biofuels, IntechOpen.
    14. Harris, D.J. & Helwig, N., 2007. "Solar chimney and building ventilation," Applied Energy, Elsevier, vol. 84(2), pages 135-146, February.
    15. Bahadori, M.N. & Mazidi, M. & Dehghani, A.R., 2008. "Experimental investigation of new designs of wind towers," Renewable Energy, Elsevier, vol. 33(10), pages 2273-2281.
    16. Calautit, John Kaiser & Hughes, Ben Richard & Chaudhry, Hassam Nasarullah & Ghani, Saud Abdul, 2013. "CFD analysis of a heat transfer device integrated wind tower system for hot and dry climate," Applied Energy, Elsevier, vol. 112(C), pages 576-591.
    17. E. M. Fischer & R. Knutti, 2015. "Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes," Nature Climate Change, Nature, vol. 5(6), pages 560-564, June.
    18. Jomehzadeh, Fatemeh & Nejat, Payam & Calautit, John Kaiser & Yusof, Mohd Badruddin Mohd & Zaki, Sheikh Ahmad & Hughes, Ben Richard & Yazid, Muhammad Noor Afiq Witri Muhammad, 2017. "A review on windcatcher for passive cooling and natural ventilation in buildings, Part 1: Indoor air quality and thermal comfort assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 736-756.
    19. Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016. "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Applied Energy, Elsevier, vol. 179(C), pages 660-668.
    20. Monghasemi, Nima & Vadiee, Amir, 2018. "A review of solar chimney integrated systems for space heating and cooling application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2714-2730.
    21. Dehghani-sanij, A.R. & Soltani, M. & Raahemifar, K., 2015. "A new design of wind tower for passive ventilation in buildings to reduce energy consumption in windy regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 182-195.
    22. Kalantar, Vali, 2009. "Numerical simulation of cooling performance of wind tower (Baud-Geer) in hot and arid region," Renewable Energy, Elsevier, vol. 34(1), pages 246-254.
    23. Chen, Jianli & Brager, Gail S. & Augenbroe, Godfried & Song, Xinyi, 2019. "Impact of outdoor air quality on the natural ventilation usage of commercial buildings in the US," Applied Energy, Elsevier, vol. 235(C), pages 673-684.
    24. Hughes, Ben Richard & Calautit, John Kaiser & Ghani, Saud Abdul, 2012. "The development of commercial wind towers for natural ventilation: A review," Applied Energy, Elsevier, vol. 92(C), pages 606-627.
    25. Martins, Nuno R. & Carrilho da Graça, Guilherme, 2017. "Impact of outdoor PM2.5 on natural ventilation usability in California’s nondomestic buildings," Applied Energy, Elsevier, vol. 189(C), pages 711-724.
    26. Shi, Long, 2018. "Theoretical models for wall solar chimney under cooling and heating modes considering room configuration," Energy, Elsevier, vol. 165(PB), pages 925-938.
    27. Maerefat, M. & Haghighi, A.P., 2010. "Natural cooling of stand-alone houses using solar chimney and evaporative cooling cavity," Renewable Energy, Elsevier, vol. 35(9), pages 2040-2052.
    28. Afshin, M. & Sohankar, A. & Manshadi, M. Dehghan & Esfeh, M. Kazemi, 2016. "An experimental study on the evaluation of natural ventilation performance of a two-sided wind-catcher for various wind angles," Renewable Energy, Elsevier, vol. 85(C), pages 1068-1078.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ibrahim Reda & Raouf N. AbdelMessih & Mohamed Steit & Ehab M. Mina, 2021. "Quantifying Fenestration Effect on Thermal Comfort in Naturally Ventilated Classrooms," Sustainability, MDPI, vol. 13(13), pages 1-22, July.
    2. Dong, Qichang & Zhao, Xiaoqing & Song, Ye & Qi, Jiacheng & Shi, Long, 2024. "Determining the potential risks of naturally ventilated double skin façades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    3. Kun Lan & Yang Chen, 2022. "Air Quality and Thermal Environment of Primary School Classrooms with Sustainable Structures in Northern Shaanxi, China: A Numerical Study," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    4. Simon Li, 2023. "Review of Engineering Controls for Indoor Air Quality: A Systems Design Perspective," Sustainability, MDPI, vol. 15(19), pages 1-46, September.
    5. Liu, Miaomiao & Nejat, Payam & Cao, Pinlu & Jimenez-Bescos, Carlos & Calautit, John Kaiser, 2024. "A critical review of windcatcher ventilation: Micro-environment, techno-economics, and commercialisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    6. Andrés Soto & Pedro Martínez & Victor M. Soto & Pedro J. Martínez, 2021. "Analysis of the Performance of a Passive Downdraught Evaporative Cooling System Driven by Solar Chimneys in a Residential Building by Using an Experimentally Validated TRNSYS Model," Energies, MDPI, vol. 14(12), pages 1-16, June.
    7. Su, Wei & Ai, Zhengtao & Liu, Jing & Yang, Bin & Wang, Faming, 2023. "Maintaining an acceptable indoor air quality of spaces by intentional natural ventilation or intermittent mechanical ventilation with minimum energy use," Applied Energy, Elsevier, vol. 348(C).
    8. Afaq Hyder Chohan & Jihad Awad, 2022. "Wind Catchers: An Element of Passive Ventilation in Hot, Arid and Humid Regions, a Comparative Analysis of Their Design and Function," Sustainability, MDPI, vol. 14(17), pages 1-23, September.
    9. Mariangela De Vita & Francesco Duronio & Angelo De Vita & Pierluigi De Berardinis, 2022. "Adaptive Retrofit for Adaptive Reuse: Converting an Industrial Chimney into a Ventilation Duct to Improve Internal Comfort in a Historic Environment," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    10. Qin, Yong & Xu, Zeshui & Wang, Xinxin & Škare, Marinko, 2022. "Green energy adoption and its determinants: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    11. Pouranian, Fatemeh & Akbari, Habibollah & Hosseinalipour, S.M., 2021. "Performance assessment of solar chimney coupled with earth-to-air heat exchanger: A passive alternative for an indoor swimming pool ventilation in hot-arid climate," Applied Energy, Elsevier, vol. 299(C).
    12. Lei, Shunbo & Pozo, David & Wang, Ming-Hao & Li, Qifeng & Li, Yupeng & Peng, Chaoyi, 2022. "Power economic dispatch against extreme weather conditions: The price of resilience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    13. Elaouzy, Youssef & El Fadar, Abdellah, 2023. "Sustainability of building-integrated bioclimatic design strategies depending on energy affordability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Jomehzadeh, Fatemeh & Nejat, Payam & Calautit, John Kaiser & Yusof, Mohd Badruddin Mohd & Zaki, Sheikh Ahmad & Hughes, Ben Richard & Yazid, Muhammad Noor Afiq Witri Muhammad, 2017. "A review on windcatcher for passive cooling and natural ventilation in buildings, Part 1: Indoor air quality and thermal comfort assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 736-756.
    3. Payam Nejat & Fatemeh Jomehzadeh & Hasanen Mohammed Hussen & John Kaiser Calautit & Muhd Zaimi Abd Majid, 2018. "Application of Wind as a Renewable Energy Source for Passive Cooling through Windcatchers Integrated with Wing Walls," Energies, MDPI, vol. 11(10), pages 1-23, September.
    4. Calautit, John Kaiser & Hughes, Ben Richard & O’Connor, Dominic & Shahzad, Sally Salome, 2017. "Numerical and experimental analysis of a multi-directional wind tower integrated with vertically-arranged heat transfer devices (VHTD)," Applied Energy, Elsevier, vol. 185(P2), pages 1120-1135.
    5. Kang, Daeho & Strand, Richard K., 2018. "Performance control of a spray passive down-draft evaporative cooling system," Applied Energy, Elsevier, vol. 222(C), pages 915-931.
    6. Liu, Miaomiao & Nejat, Payam & Cao, Pinlu & Jimenez-Bescos, Carlos & Calautit, John Kaiser, 2024. "A critical review of windcatcher ventilation: Micro-environment, techno-economics, and commercialisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    7. Montazeri, H. & Montazeri, F., 2018. "CFD simulation of cross-ventilation in buildings using rooftop wind-catchers: Impact of outlet openings," Renewable Energy, Elsevier, vol. 118(C), pages 502-520.
    8. Heidari, Sahar & Poshtiri, Amin Haghighi & Gilvaei, Zoleikha Moghtader, 2024. "Enhancing thermal comfort and natural ventilation in residential buildings: A design and assessment of an integrated system with horizontal windcatcher and evaporative cooling channels," Energy, Elsevier, vol. 289(C).
    9. Moghtader Gilvaei, Zoleikha & Haghighi Poshtiri, Amin & Mirzazade Akbarpoor, Ali, 2022. "A novel passive system for providing natural ventilation and passive cooling: Evaluating thermal comfort and building energy," Renewable Energy, Elsevier, vol. 198(C), pages 463-483.
    10. Alsailani, M. & Montazeri, H. & Rezaeiha, A., 2021. "Towards optimal aerodynamic design of wind catchers: Impact of geometrical characteristics," Renewable Energy, Elsevier, vol. 168(C), pages 1344-1363.
    11. Kang, Daeho & Strand, Richard K., 2016. "Significance of parameters affecting the performance of a passive down-draft evaporative cooling (PDEC) tower with a spray system," Applied Energy, Elsevier, vol. 178(C), pages 269-280.
    12. Goudarzi, Hossein & Mostafaeipour, Ali, 2017. "Energy saving evaluation of passive systems for residential buildings in hot and dry regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 432-446.
    13. Chen, Yujiao & Tong, Zheming & Wu, Wentao & Samuelson, Holly & Malkawi, Ali & Norford, Leslie, 2019. "Achieving natural ventilation potential in practice: Control schemes and levels of automation," Applied Energy, Elsevier, vol. 235(C), pages 1141-1152.
    14. Wang, Qingyuan & Zhang, Guomin & Wu, Qihong & Li, Wenyuan & Shi, Long, 2022. "A combined wall and roof solar chimney in one building," Energy, Elsevier, vol. 240(C).
    15. Vargas-López, R. & Xamán, J. & Hernández-Pérez, I. & Arce, J. & Zavala-Guillén, I. & Jiménez, M.J. & Heras, M.R., 2019. "Mathematical models of solar chimneys with a phase change material for ventilation of buildings: A review using global energy balance," Energy, Elsevier, vol. 170(C), pages 683-708.
    16. Cheng, Xudong & Shi, Zhicheng & Nguyen, Kate & Zhang, Lihai & Zhou, Yong & Zhang, Guomin & Wang, Jinhui & Shi, Long, 2020. "Solar chimney in tunnel considering energy-saving and fire safety," Energy, Elsevier, vol. 210(C).
    17. Calautit, John Kaiser & Hughes, Ben Richard & Shahzad, Sally Salome, 2015. "CFD and wind tunnel study of the performance of a uni-directional wind catcher with heat transfer devices," Renewable Energy, Elsevier, vol. 83(C), pages 85-99.
    18. Rezaeian, M. & Montazeri, H. & Loonen, R.C.G.M., 2017. "Science foresight using life-cycle analysis, text mining and clustering: A case study on natural ventilation," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 270-280.
    19. Calautit, John Kaiser & Hughes, Ben Richard, 2016. "A passive cooling wind catcher with heat pipe technology: CFD, wind tunnel and field-test analysis," Applied Energy, Elsevier, vol. 162(C), pages 460-471.
    20. Zhang, Haihua & Tao, Yao & Zhang, Guomin & Li, Jie & Setunge, Sujeeva & Shi, Long, 2022. "Impacts of storey number of buildings on solar chimney performance: A theoretical and numerical approach," Energy, Elsevier, vol. 261(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:138:y:2021:i:c:s1364032120309539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.