IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v222y2018icp915-931.html
   My bibliography  Save this article

Performance control of a spray passive down-draft evaporative cooling system

Author

Listed:
  • Kang, Daeho
  • Strand, Richard K.

Abstract

A spray passive down-draft evaporative cooling system has been regarded as a low-energy cooling system that leads significant energy savings in the cooling of buildings. While the energy saving capability of the system has been proven, the ability to control a comfortable indoor environment is still inadequate due to strong climatic dependency. This study seeks viable solutions to advance the control competence of the system by mitigating critical problems of the system to be a reliable cooling application in the cooling of buildings. It proposes potential control strategies for the system and alternative operations. It develops a control algorithm for the proposed control strategies and implements the algorithm in EnergyPlus. A simulation analysis follows to examine the functionality of each proposed control strategy and alternative operations. The results of the simulations ascertain that a spray PDEC system with a water flow control performs better. In addition, a spray PDEC system contributes most when it operates as a secondary cooling system to abate space cooling loads and to maintain a steady thermal environment by reducing 62.1% electricity for space cooling and 47.9% water consumption in a warm-moderate climate.

Suggested Citation

  • Kang, Daeho & Strand, Richard K., 2018. "Performance control of a spray passive down-draft evaporative cooling system," Applied Energy, Elsevier, vol. 222(C), pages 915-931.
  • Handle: RePEc:eee:appene:v:222:y:2018:i:c:p:915-931
    DOI: 10.1016/j.apenergy.2018.03.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918303660
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.03.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Montazeri, H. & Montazeri, F., 2018. "CFD simulation of cross-ventilation in buildings using rooftop wind-catchers: Impact of outlet openings," Renewable Energy, Elsevier, vol. 118(C), pages 502-520.
    2. Calautit, John Kaiser & Hughes, Ben Richard & Nasir, Diana SNM, 2017. "Climatic analysis of a passive cooling technology for the built environment in hot countries," Applied Energy, Elsevier, vol. 186(P3), pages 321-335.
    3. Saadatian, Omidreza & Haw, Lim Chin & Sopian, K. & Sulaiman, M.Y., 2012. "Review of windcatcher technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1477-1495.
    4. Bajwa, Maqsood & Aksugur, Erdal & Al-Otaibi, Ghazi, 1993. "The potential of the evaporative cooling techniques in the gulf region of the Kingdom of Saudi Arabia," Renewable Energy, Elsevier, vol. 3(1), pages 15-29.
    5. Haghighi, A.P. & Pakdel, S.H. & Jafari, A., 2016. "A study of a wind catcher assisted adsorption cooling channel for natural cooling of a 2-storey building," Energy, Elsevier, vol. 102(C), pages 118-138.
    6. Bahadori, M.N. & Mazidi, M. & Dehghani, A.R., 2008. "Experimental investigation of new designs of wind towers," Renewable Energy, Elsevier, vol. 33(10), pages 2273-2281.
    7. Calautit, John Kaiser & Hughes, Ben Richard & Chaudhry, Hassam Nasarullah & Ghani, Saud Abdul, 2013. "CFD analysis of a heat transfer device integrated wind tower system for hot and dry climate," Applied Energy, Elsevier, vol. 112(C), pages 576-591.
    8. Ford, Brian & Patel, Nimish & Zaveri, Parul & Hewitt, Mark, 1998. "Cooling without air conditioning," Renewable Energy, Elsevier, vol. 15(1), pages 177-182.
    9. Kang, Daeho & Strand, Richard K., 2016. "Significance of parameters affecting the performance of a passive down-draft evaporative cooling (PDEC) tower with a spray system," Applied Energy, Elsevier, vol. 178(C), pages 269-280.
    10. Dehghani-sanij, A.R. & Soltani, M. & Raahemifar, K., 2015. "A new design of wind tower for passive ventilation in buildings to reduce energy consumption in windy regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 182-195.
    11. Kalantar, Vali, 2009. "Numerical simulation of cooling performance of wind tower (Baud-Geer) in hot and arid region," Renewable Energy, Elsevier, vol. 34(1), pages 246-254.
    12. Calautit, John Kaiser & Chaudhry, Hassam Nasarullah & Hughes, Ben Richard & Ghani, Saud Abdul, 2013. "Comparison between evaporative cooling and a heat pipe assisted thermal loop for a commercial wind tower in hot and dry climatic conditions," Applied Energy, Elsevier, vol. 101(C), pages 740-755.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Xin & Yan, Weichao & Liu, Yilin & Zhao, Min & Jin, Liwen, 2020. "Performance analysis of a hollow fiber membrane-based heat and mass exchanger for evaporative cooling," Applied Energy, Elsevier, vol. 271(C).
    2. Yan, Weichao & Meng, Xiangzhao & Cui, Xin & Liu, Yilin & Chen, Qian & Jin, Liwen, 2022. "Evaporative cooling performance prediction and multi-objective optimization for hollow fiber membrane module using response surface methodology," Applied Energy, Elsevier, vol. 325(C).
    3. Cui, Haijiao & Li, Nianping & Peng, Jinqing & Yin, Rongxin & Li, Jingming & Wu, Zhibin, 2018. "Investigation on the thermal performance of a novel spray tower with upward spraying and downward gas flow," Applied Energy, Elsevier, vol. 231(C), pages 12-21.
    4. Ulpiani, Giulia & di Perna, Costanzo & Zinzi, Michele, 2019. "Water nebulization to counteract urban overheating: Development and experimental test of a smart logic to maximize energy efficiency and outdoor environmental quality," Applied Energy, Elsevier, vol. 239(C), pages 1091-1113.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed, Tariq & Kumar, Prashant & Mottet, Laetitia, 2021. "Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience and indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Kang, Daeho & Strand, Richard K., 2016. "Significance of parameters affecting the performance of a passive down-draft evaporative cooling (PDEC) tower with a spray system," Applied Energy, Elsevier, vol. 178(C), pages 269-280.
    3. Jomehzadeh, Fatemeh & Nejat, Payam & Calautit, John Kaiser & Yusof, Mohd Badruddin Mohd & Zaki, Sheikh Ahmad & Hughes, Ben Richard & Yazid, Muhammad Noor Afiq Witri Muhammad, 2017. "A review on windcatcher for passive cooling and natural ventilation in buildings, Part 1: Indoor air quality and thermal comfort assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 736-756.
    4. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Montazeri, H. & Montazeri, F., 2018. "CFD simulation of cross-ventilation in buildings using rooftop wind-catchers: Impact of outlet openings," Renewable Energy, Elsevier, vol. 118(C), pages 502-520.
    6. Alsailani, M. & Montazeri, H. & Rezaeiha, A., 2021. "Towards optimal aerodynamic design of wind catchers: Impact of geometrical characteristics," Renewable Energy, Elsevier, vol. 168(C), pages 1344-1363.
    7. Calautit, John Kaiser & Hughes, Ben Richard & O’Connor, Dominic & Shahzad, Sally Salome, 2017. "Numerical and experimental analysis of a multi-directional wind tower integrated with vertically-arranged heat transfer devices (VHTD)," Applied Energy, Elsevier, vol. 185(P2), pages 1120-1135.
    8. Calautit, John Kaiser & Hughes, Ben Richard, 2016. "A passive cooling wind catcher with heat pipe technology: CFD, wind tunnel and field-test analysis," Applied Energy, Elsevier, vol. 162(C), pages 460-471.
    9. Mostafaeipour, Ali & Bardel, Behnoosh & Mohammadi, Kasra & Sedaghat, Ahmad & Dinpashoh, Yagob, 2014. "Economic evaluation for cooling and ventilation of medicine storage warehouses utilizing wind catchers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 12-19.
    10. O’Connor, Dominic & Calautit, John Kaiser S. & Hughes, Ben Richard, 2016. "A review of heat recovery technology for passive ventilation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1481-1493.
    11. Calautit, John Kaiser & Hughes, Ben Richard & Shahzad, Sally Salome, 2015. "CFD and wind tunnel study of the performance of a uni-directional wind catcher with heat transfer devices," Renewable Energy, Elsevier, vol. 83(C), pages 85-99.
    12. Moghtader Gilvaei, Zoleikha & Haghighi Poshtiri, Amin & Mirzazade Akbarpoor, Ali, 2022. "A novel passive system for providing natural ventilation and passive cooling: Evaluating thermal comfort and building energy," Renewable Energy, Elsevier, vol. 198(C), pages 463-483.
    13. Calautit, John Kaiser & Hughes, Ben Richard & Nasir, Diana SNM, 2017. "Climatic analysis of a passive cooling technology for the built environment in hot countries," Applied Energy, Elsevier, vol. 186(P3), pages 321-335.
    14. Calautit, John Kaiser & O’Connor, Dominic & Tien, Paige Wenbin & Wei, Shuangyu & Pantua, Conrad Allan Jay & Hughes, Ben, 2020. "Development of a natural ventilation windcatcher with passive heat recovery wheel for mild-cold climates: CFD and experimental analysis," Renewable Energy, Elsevier, vol. 160(C), pages 465-482.
    15. Goudarzi, Hossein & Mostafaeipour, Ali, 2017. "Energy saving evaluation of passive systems for residential buildings in hot and dry regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 432-446.
    16. Calautit, John Kaiser & Hughes, Ben Richard & Chaudhry, Hassam Nasarullah & Ghani, Saud Abdul, 2013. "CFD analysis of a heat transfer device integrated wind tower system for hot and dry climate," Applied Energy, Elsevier, vol. 112(C), pages 576-591.
    17. Rezaeian, M. & Montazeri, H. & Loonen, R.C.G.M., 2017. "Science foresight using life-cycle analysis, text mining and clustering: A case study on natural ventilation," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 270-280.
    18. Calautit, John Kaiser & O'Connor, Dominic & Hughes, Ben Richard, 2016. "A natural ventilation wind tower with heat pipe heat recovery for cold climates," Renewable Energy, Elsevier, vol. 87(P3), pages 1088-1104.
    19. Afaq Hyder Chohan & Jihad Awad, 2022. "Wind Catchers: An Element of Passive Ventilation in Hot, Arid and Humid Regions, a Comparative Analysis of Their Design and Function," Sustainability, MDPI, vol. 14(17), pages 1-23, September.
    20. Payam Nejat & Fatemeh Jomehzadeh & Hasanen Mohammed Hussen & John Kaiser Calautit & Muhd Zaimi Abd Majid, 2018. "Application of Wind as a Renewable Energy Source for Passive Cooling through Windcatchers Integrated with Wing Walls," Energies, MDPI, vol. 11(10), pages 1-23, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:222:y:2018:i:c:p:915-931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.