IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i3p1477-1495.html
   My bibliography  Save this article

Review of windcatcher technologies

Author

Listed:
  • Saadatian, Omidreza
  • Haw, Lim Chin
  • Sopian, K.
  • Sulaiman, M.Y.

Abstract

Mechanical cooling systems in buildings are the main producers of carbon dioxide emissions, which have negative impacts on environment and amplify global warming, particularly in hot climate. Due to the lack of energy supply, windcatchers can be utilized as a sustainable attempt for cooling and ventilation purposes. The objective of this paper is to review and provide a comprehensive literature on windcatcher system for space cooling and ventilation. The concepts were discussed according to the relevant parameters of windcatcher, i.e. windcatcher attributes, windcatcher configurations and windcatcher technologies. The pros and cons of this green architectural feature have also been highlighted and the future research need in this realm of study is proposed.

Suggested Citation

  • Saadatian, Omidreza & Haw, Lim Chin & Sopian, K. & Sulaiman, M.Y., 2012. "Review of windcatcher technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1477-1495.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:3:p:1477-1495
    DOI: 10.1016/j.rser.2011.11.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032111005843
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2011.11.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Florides, G. A. & Tassou, S. A. & Kalogirou, S. A. & Wrobel, L. C., 2002. "Review of solar and low energy cooling technologies for buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(6), pages 557-572, December.
    2. Daou, K. & Wang, R.Z. & Xia, Z.Z., 2006. "Desiccant cooling air conditioning: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(2), pages 55-77, April.
    3. Bahadori, Mehdi N., 1994. "Viability of wind towers in achieving summer comfort in the hot arid regions of the middle east," Renewable Energy, Elsevier, vol. 5(5), pages 879-892.
    4. Chan, Hoy-Yen & Riffat, Saffa B. & Zhu, Jie, 2010. "Review of passive solar heating and cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 781-789, February.
    5. Spanaki, Artemisia & Tsoutsos, Theocharis & Kolokotsa, Dionysia, 2011. "On the selection and design of the proper roof pond variant for passive cooling purposes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3523-3533.
    6. Nouanégué, H.F. & Alandji, L.R. & Bilgen, E., 2008. "Numerical study of solar-wind tower systems for ventilation of dwellings," Renewable Energy, Elsevier, vol. 33(3), pages 434-443.
    7. Montazeri, H. & Montazeri, F. & Azizian, R. & Mostafavi, S., 2010. "Two-sided wind catcher performance evaluation using experimental, numerical and analytical modeling," Renewable Energy, Elsevier, vol. 35(7), pages 1424-1435.
    8. Gadi, Mohamed B., 2000. "Design and simulation of a new energy conscious system, (basic concept)," Applied Energy, Elsevier, vol. 65(1-4), pages 349-353, April.
    9. Zhai, X.Q. & Song, Z.P. & Wang, R.Z., 2011. "A review for the applications of solar chimneys in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3757-3767.
    10. Mahlia, T.M.I. & Saidur, R. & Memon, L.A. & Zulkifli, N.W.M. & Masjuki, H.H., 2010. "A review on fuel economy standard for motor vehicles with the implementation possibilities in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3092-3099, December.
    11. Gadi, Mohamed B., 2000. "Design and simulation of a new energy-conscious system (CFD and solar simulation)," Applied Energy, Elsevier, vol. 65(1-4), pages 251-256, April.
    12. Hughes, Ben Richard & Chaudhry, Hassam Nasarullah & Ghani, Saud Abdul, 2011. "A review of sustainable cooling technologies in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3112-3120, August.
    13. Bahadori, M.N. & Mazidi, M. & Dehghani, A.R., 2008. "Experimental investigation of new designs of wind towers," Renewable Energy, Elsevier, vol. 33(10), pages 2273-2281.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Montazeri, H. & Montazeri, F., 2018. "CFD simulation of cross-ventilation in buildings using rooftop wind-catchers: Impact of outlet openings," Renewable Energy, Elsevier, vol. 118(C), pages 502-520.
    2. Saadatian, Omidreza & Sopian, K. & Lim, C.H. & Asim, Nilofar & Sulaiman, M.Y., 2012. "Trombe walls: A review of opportunities and challenges in research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6340-6351.
    3. O’Connor, Dominic & Calautit, John Kaiser S. & Hughes, Ben Richard, 2016. "A review of heat recovery technology for passive ventilation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1481-1493.
    4. Saadatian, Omidreza & Sopian, K. & Salleh, E. & Lim, C.H. & Riffat, Safa & Saadatian, Elham & Toudeshki, Arash & Sulaiman, M.Y., 2013. "A review of energy aspects of green roofs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 155-168.
    5. Mahon, Harry & Friedrich, Daniel & Hughes, Ben, 2022. "Wind tunnel test and numerical study of a multi-sided wind tower with horizontal heat pipes," Energy, Elsevier, vol. 260(C).
    6. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    7. Soni, Suresh Kumar & Pandey, Mukesh & Bartaria, Vishvendra Nath, 2016. "Hybrid ground coupled heat exchanger systems for space heating/cooling applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 724-738.
    8. Jomehzadeh, Fatemeh & Nejat, Payam & Calautit, John Kaiser & Yusof, Mohd Badruddin Mohd & Zaki, Sheikh Ahmad & Hughes, Ben Richard & Yazid, Muhammad Noor Afiq Witri Muhammad, 2017. "A review on windcatcher for passive cooling and natural ventilation in buildings, Part 1: Indoor air quality and thermal comfort assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 736-756.
    9. Dehghani-sanij, A.R. & Soltani, M. & Raahemifar, K., 2015. "A new design of wind tower for passive ventilation in buildings to reduce energy consumption in windy regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 182-195.
    10. Calautit, John Kaiser & Hughes, Ben Richard & O’Connor, Dominic & Shahzad, Sally Salome, 2017. "Numerical and experimental analysis of a multi-directional wind tower integrated with vertically-arranged heat transfer devices (VHTD)," Applied Energy, Elsevier, vol. 185(P2), pages 1120-1135.
    11. Rezaeian, M. & Montazeri, H. & Loonen, R.C.G.M., 2017. "Science foresight using life-cycle analysis, text mining and clustering: A case study on natural ventilation," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 270-280.
    12. Suárez de la Fuente, Santiago & Larsen, Ulrik & Pawling, Rachel & García Kerdan, Iván & Greig, Alistair & Bucknall, Richard, 2018. "Using the forward movement of a container ship navigating in the Arctic to air-cool a marine organic Rankine cycle unit," Energy, Elsevier, vol. 159(C), pages 1046-1059.
    13. Sadra Sahebzadeh & Abolfazl Heidari & Hamed Kamelnia & Abolfazl Baghbani, 2017. "Sustainability Features of Iran’s Vernacular Architecture: A Comparative Study between the Architecture of Hot–Arid and Hot–Arid–Windy Regions," Sustainability, MDPI, vol. 9(5), pages 1-28, May.
    14. Kang, Daeho & Strand, Richard K., 2018. "Performance control of a spray passive down-draft evaporative cooling system," Applied Energy, Elsevier, vol. 222(C), pages 915-931.
    15. Cuce, Erdem & Harjunowibowo, Dewanto & Cuce, Pinar Mert, 2016. "Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 34-59.
    16. Moghtader Gilvaei, Zoleikha & Haghighi Poshtiri, Amin & Mirzazade Akbarpoor, Ali, 2022. "A novel passive system for providing natural ventilation and passive cooling: Evaluating thermal comfort and building energy," Renewable Energy, Elsevier, vol. 198(C), pages 463-483.
    17. Goudarzi, Hossein & Mostafaeipour, Ali, 2017. "Energy saving evaluation of passive systems for residential buildings in hot and dry regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 432-446.
    18. Chenari, Behrang & Dias Carrilho, João & Gameiro da Silva, Manuel, 2016. "Towards sustainable, energy-efficient and healthy ventilation strategies in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1426-1447.
    19. Mostafaeipour, Ali & Bardel, Behnoosh & Mohammadi, Kasra & Sedaghat, Ahmad & Dinpashoh, Yagob, 2014. "Economic evaluation for cooling and ventilation of medicine storage warehouses utilizing wind catchers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 12-19.
    20. Ahmed, Tariq & Kumar, Prashant & Mottet, Laetitia, 2021. "Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience and indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    21. Abolfazl Heidari & Sadra Sahebzadeh & Zahra Dalvand, 2017. "Natural Ventilation in Vernacular Architecture of Sistan, Iran; Classification and CFD Study of Compound Rooms," Sustainability, MDPI, vol. 9(6), pages 1-19, June.
    22. Tejero-González, Ana & Andrés-Chicote, Manuel & García-Ibáñez, Paola & Velasco-Gómez, Eloy & Rey-Martínez, Francisco Javier, 2016. "Assessing the applicability of passive cooling and heating techniques through climate factors: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 727-742.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Mostafaeipour, Ali & Bardel, Behnoosh & Mohammadi, Kasra & Sedaghat, Ahmad & Dinpashoh, Yagob, 2014. "Economic evaluation for cooling and ventilation of medicine storage warehouses utilizing wind catchers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 12-19.
    3. Hughes, Ben Richard & Calautit, John Kaiser & Ghani, Saud Abdul, 2012. "The development of commercial wind towers for natural ventilation: A review," Applied Energy, Elsevier, vol. 92(C), pages 606-627.
    4. Rezaeian, M. & Montazeri, H. & Loonen, R.C.G.M., 2017. "Science foresight using life-cycle analysis, text mining and clustering: A case study on natural ventilation," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 270-280.
    5. Alsailani, M. & Montazeri, H. & Rezaeiha, A., 2021. "Towards optimal aerodynamic design of wind catchers: Impact of geometrical characteristics," Renewable Energy, Elsevier, vol. 168(C), pages 1344-1363.
    6. Lu, Xing & Xu, Peng & Wang, Huilong & Yang, Tao & Hou, Jin, 2016. "Cooling potential and applications prospects of passive radiative cooling in buildings: The current state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1079-1097.
    7. Stevanović, Sanja, 2013. "Optimization of passive solar design strategies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 177-196.
    8. Jomehzadeh, Fatemeh & Nejat, Payam & Calautit, John Kaiser & Yusof, Mohd Badruddin Mohd & Zaki, Sheikh Ahmad & Hughes, Ben Richard & Yazid, Muhammad Noor Afiq Witri Muhammad, 2017. "A review on windcatcher for passive cooling and natural ventilation in buildings, Part 1: Indoor air quality and thermal comfort assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 736-756.
    9. Shi, Long & Zhang, Guomin & Yang, Wei & Huang, Dongmei & Cheng, Xudong & Setunge, Sujeeva, 2018. "Determining the influencing factors on the performance of solar chimney in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 223-238.
    10. Dehghani-sanij, A.R. & Soltani, M. & Raahemifar, K., 2015. "A new design of wind tower for passive ventilation in buildings to reduce energy consumption in windy regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 182-195.
    11. Moosavi, Leila & Mahyuddin, Norhayati & Ab Ghafar, Norafida & Azzam Ismail, Muhammad, 2014. "Thermal performance of atria: An overview of natural ventilation effective designs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 654-670.
    12. Montazeri, H. & Montazeri, F., 2018. "CFD simulation of cross-ventilation in buildings using rooftop wind-catchers: Impact of outlet openings," Renewable Energy, Elsevier, vol. 118(C), pages 502-520.
    13. Sajad M.R. Khani & Mehdi N. Bahadori & Alireza Dehghani-Sanij & Ahmad Nourbakhsh, 2017. "Performance Evaluation of a Modular Design of Wind Tower with Wetted Surfaces," Energies, MDPI, vol. 10(7), pages 1-20, June.
    14. Gunjo, Dawit Gudeta & Mahanta, Pinakeswar & Robi, Puthuveettil Sreedharan, 2017. "Exergy and energy analysis of a novel type solar collector under steady state condition: Experimental and CFD analysis," Renewable Energy, Elsevier, vol. 114(PB), pages 655-669.
    15. Afshin, M. & Sohankar, A. & Manshadi, M. Dehghan & Esfeh, M. Kazemi, 2016. "An experimental study on the evaluation of natural ventilation performance of a two-sided wind-catcher for various wind angles," Renewable Energy, Elsevier, vol. 85(C), pages 1068-1078.
    16. Oropeza-Perez, Ivan & Østergaard, Poul Alberg, 2014. "Potential of natural ventilation in temperate countries – A case study of Denmark," Applied Energy, Elsevier, vol. 114(C), pages 520-530.
    17. Payam Nejat & Fatemeh Jomehzadeh & Hasanen Mohammed Hussen & John Kaiser Calautit & Muhd Zaimi Abd Majid, 2018. "Application of Wind as a Renewable Energy Source for Passive Cooling through Windcatchers Integrated with Wing Walls," Energies, MDPI, vol. 11(10), pages 1-23, September.
    18. Saadatian, Omidreza & Sopian, K. & Lim, C.H. & Asim, Nilofar & Sulaiman, M.Y., 2012. "Trombe walls: A review of opportunities and challenges in research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6340-6351.
    19. Singh, Ashutosh & Kumar, Sunil & Dev, Rahul, 2019. "Studies on cocopeat, sawdust and dried cow dung as desiccant for evaporative cooling system," Renewable Energy, Elsevier, vol. 142(C), pages 295-303.
    20. Kang, Daeho & Strand, Richard K., 2016. "Significance of parameters affecting the performance of a passive down-draft evaporative cooling (PDEC) tower with a spray system," Applied Energy, Elsevier, vol. 178(C), pages 269-280.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:3:p:1477-1495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.