IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v239y2019icp1091-1113.html
   My bibliography  Save this article

Water nebulization to counteract urban overheating: Development and experimental test of a smart logic to maximize energy efficiency and outdoor environmental quality

Author

Listed:
  • Ulpiani, Giulia
  • di Perna, Costanzo
  • Zinzi, Michele

Abstract

Several mature urban climate mitigation technologies have been proposed to date. What mostly hinders their wide implementation is that their efficiency heavily depends on the local microclimatic specificities, since they cannot self-adjust to the environmental changes. This study aims at investigating benefits and impacts of smart logics applied to outdoor cooling, by field testing a web of nebulizers coupled to a bespoke fuzzy controller piloting the pump. The cooling action was tweaked as convenient to maintain comfortable conditions and to avoid energy wastage whenever unneeded. To the best of the authors’ knowledge, this is the first application of fuzzy logic to water spraying systems (or to any other controllable urban climate mitigation technology) targeting comfort and energy optimization. The prototype was field monitored in comparison with the conventional on-off control, in two Italian urban contexts (Cfa and Csa climatic zones) over 15 days in the hottest months of the year. The cooling and humidification action was thoroughly characterized by mapping both the horizontal and vertical profiles and by applying advanced Artificial Intelligence techniques to spot the main environmental drivers. The maximum cooling (measured between the sprayed area and an undisturbed reference) touched 7.5 °C and 6.14 °C in the two locations, respectively. The energy saving achieved under fuzzy control versus the temporized control, was spectacularly high in the wetter and windier location with an average of −51.2% and a maximum of −67.5%. The comfort benefit was also substantial: the temperature never deviated from neutrality by more than ±2 °C, whereas with the on–off, this threshold was surpassed between the 14% and the 20% of the time by even more than 5 °C. The results suggest that smartly controlled nebulization is an energy-efficient and comfort-effective strategy to counteract urban overheating. Furthermore, solar-powered solutions are well suited as proved by the preliminary design estimation we included.

Suggested Citation

  • Ulpiani, Giulia & di Perna, Costanzo & Zinzi, Michele, 2019. "Water nebulization to counteract urban overheating: Development and experimental test of a smart logic to maximize energy efficiency and outdoor environmental quality," Applied Energy, Elsevier, vol. 239(C), pages 1091-1113.
  • Handle: RePEc:eee:appene:v:239:y:2019:i:c:p:1091-1113
    DOI: 10.1016/j.apenergy.2019.01.231
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919302600
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.01.231?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zinzi, Michele & Carnielo, Emiliano & Mattoni, Benedetta, 2018. "On the relation between urban climate and energy performance of buildings. A three-years experience in Rome, Italy," Applied Energy, Elsevier, vol. 221(C), pages 148-160.
    2. Xu, Xiaoyu & González, Jorge E. & Shen, Shuanghe & Miao, Shiguang & Dou, Junxia, 2018. "Impacts of urbanization and air pollution on building energy demands — Beijing case study," Applied Energy, Elsevier, vol. 225(C), pages 98-109.
    3. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.
    4. Radhi, Hassan & Sharples, Stephen, 2013. "Quantifying the domestic electricity consumption for air-conditioning due to urban heat islands in hot arid regions," Applied Energy, Elsevier, vol. 112(C), pages 371-380.
    5. James Keirstead & Aruna Sivakumar, 2012. "Using Activity‐Based Modeling to Simulate Urban Resource Demands at High Spatial and Temporal Resolutions," Journal of Industrial Ecology, Yale University, vol. 16(6), pages 889-900, December.
    6. Kang, Daeho & Strand, Richard K., 2018. "Performance control of a spray passive down-draft evaporative cooling system," Applied Energy, Elsevier, vol. 222(C), pages 915-931.
    7. Li, Canbing & Zhou, Jinju & Cao, Yijia & Zhong, Jin & Liu, Yu & Kang, Chongqing & Tan, Yi, 2014. "Interaction between urban microclimate and electric air-conditioning energy consumption during high temperature season," Applied Energy, Elsevier, vol. 117(C), pages 149-156.
    8. Aaswath P. Raman & Marc Abou Anoma & Linxiao Zhu & Eden Rephaeli & Shanhui Fan, 2014. "Passive radiative cooling below ambient air temperature under direct sunlight," Nature, Nature, vol. 515(7528), pages 540-544, November.
    9. Yan, Huaxia & Pan, Yan & Li, Zhao & Deng, Shiming, 2018. "Further development of a thermal comfort based fuzzy logic controller for a direct expansion air conditioning system," Applied Energy, Elsevier, vol. 219(C), pages 312-324.
    10. Camilo Mora & Bénédicte Dousset & Iain R. Caldwell & Farrah E. Powell & Rollan C. Geronimo & Coral R. Bielecki & Chelsie W. W. Counsell & Bonnie S. Dietrich & Emily T. Johnston & Leo V. Louis & Matthe, 2017. "Global risk of deadly heat," Nature Climate Change, Nature, vol. 7(7), pages 501-506, July.
    11. Liang, Zhuoran & Tian, Zhan & Sun, Laixiang & Feng, Kuishuang & Zhong, Honglin & Gu, Tingting & Liu, Xiaochen, 2016. "Heat wave, electricity rationing, and trade-offs between environmental gains and economic losses: The example of Shanghai," Applied Energy, Elsevier, vol. 184(C), pages 951-959.
    12. Tremeac, Brice & Bousquet, Pierre & de Munck, Cecile & Pigeon, Gregoire & Masson, Valery & Marchadier, Colette & Merchat, Michele & Poeuf, Pierre & Meunier, Francis, 2012. "Influence of air conditioning management on heat island in Paris air street temperatures," Applied Energy, Elsevier, vol. 95(C), pages 102-110.
    13. Lam, Tony N.T. & Wan, Kevin K.W. & Wong, S.L. & Lam, Joseph C., 2010. "Impact of climate change on commercial sector air conditioning energy consumption in subtropical Hong Kong," Applied Energy, Elsevier, vol. 87(7), pages 2321-2327, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Woonkun Jung & Gunwoo Kim, 2024. "Reduction of Fine Dust and Alleviation of Heat Island Effect: An Analysis of Cold Air Flow in Pohang City, South Korea," Land, MDPI, vol. 13(3), pages 1-32, March.
    2. Ulpiani, Giulia, 2019. "Water mist spray for outdoor cooling: A systematic review of technologies, methods and impacts," Applied Energy, Elsevier, vol. 254(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Luyang & Luo, Zhiwen & Matthews, Wendy & Wang, Zixuan & Li, Yuguo & Liu, Jing, 2019. "Impacts of urban microclimate on summertime sensible and latent energy demand for cooling in residential buildings of Hong Kong," Energy, Elsevier, vol. 189(C).
    2. Meng, Fanchao & Zhang, Lei & Ren, Guoyu & Zhang, Ruixue, 2023. "Impacts of UHI on variations in cooling loads in buildings during heatwaves: A case study of Beijing and Tianjin, China," Energy, Elsevier, vol. 273(C).
    3. Yang, Xiaoshan & Peng, Lilliana L.H. & Jiang, Zhidian & Chen, Yuan & Yao, Lingye & He, Yunfei & Xu, Tianjing, 2020. "Impact of urban heat island on energy demand in buildings: Local climate zones in Nanjing," Applied Energy, Elsevier, vol. 260(C).
    4. Ulpiani, Giulia, 2019. "Water mist spray for outdoor cooling: A systematic review of technologies, methods and impacts," Applied Energy, Elsevier, vol. 254(C).
    5. Jim, C.Y., 2014. "Air-conditioning energy consumption due to green roofs with different building thermal insulation," Applied Energy, Elsevier, vol. 128(C), pages 49-59.
    6. Guo, Siyue & Yan, Da & Hong, Tianzhen & Xiao, Chan & Cui, Ying, 2019. "A novel approach for selecting typical hot-year (THY) weather data," Applied Energy, Elsevier, vol. 242(C), pages 1634-1648.
    7. Zinzi, Michele & Carnielo, Emiliano & Mattoni, Benedetta, 2018. "On the relation between urban climate and energy performance of buildings. A three-years experience in Rome, Italy," Applied Energy, Elsevier, vol. 221(C), pages 148-160.
    8. Ascione, Fabrizio & Bellia, Laura & Capozzoli, Alfonso, 2013. "A coupled numerical approach on museum air conditioning: Energy and fluid-dynamic analysis," Applied Energy, Elsevier, vol. 103(C), pages 416-427.
    9. Rongjiang Ma & Shen Yang & Xianlin Wang & Xi-Cheng Wang & Ming Shan & Nanyang Yu & Xudong Yang, 2020. "Systematic Method for the Energy-Saving Potential Calculation of Air-Conditioning Systems via Data Mining. Part I: Methodology," Energies, MDPI, vol. 14(1), pages 1-15, December.
    10. D'Amico, A. & Ciulla, G. & Panno, D. & Ferrari, S., 2019. "Building energy demand assessment through heating degree days: The importance of a climatic dataset," Applied Energy, Elsevier, vol. 242(C), pages 1285-1306.
    11. Kong, Fanhua & Sun, Changfeng & Liu, Fengfeng & Yin, Haiwei & Jiang, Fei & Pu, Yingxia & Cavan, Gina & Skelhorn, Cynthia & Middel, Ariane & Dronova, Iryna, 2016. "Energy saving potential of fragmented green spaces due to their temperature regulating ecosystem services in the summer," Applied Energy, Elsevier, vol. 183(C), pages 1428-1440.
    12. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.
    13. Duan, Shuangping & Luo, Zhiwen & Yang, Xinyan & Li, Yuguo, 2019. "The impact of building operations on urban heat/cool islands under urban densification: A comparison between naturally-ventilated and air-conditioned buildings," Applied Energy, Elsevier, vol. 235(C), pages 129-138.
    14. Long Pei & Patrick Schalbart & Bruno Peuportier, 2023. "Quantitative Evaluation of the Effects of Heat Island on Building Energy Simulation: A Case Study in Wuhan, China," Energies, MDPI, vol. 16(7), pages 1-23, March.
    15. Yuanzheng Li & Wenjing Wang & Yating Wang & Yashu Xin & Tian He & Guosong Zhao, 2020. "A Review of Studies Involving the Effects of Climate Change on the Energy Consumption for Building Heating and Cooling," IJERPH, MDPI, vol. 18(1), pages 1-18, December.
    16. Xu, Xiaoyu & González, Jorge E. & Shen, Shuanghe & Miao, Shiguang & Dou, Junxia, 2018. "Impacts of urbanization and air pollution on building energy demands — Beijing case study," Applied Energy, Elsevier, vol. 225(C), pages 98-109.
    17. Li, Xiaoma & Zhou, Yuyu & Yu, Sha & Jia, Gensuo & Li, Huidong & Li, Wenliang, 2019. "Urban heat island impacts on building energy consumption: A review of approaches and findings," Energy, Elsevier, vol. 174(C), pages 407-419.
    18. Kolbe, Karin, 2019. "Mitigating urban heat island effect and carbon dioxide emissions through different mobility concepts: Comparison of conventional vehicles with electric vehicles, hydrogen vehicles and public transport," Transport Policy, Elsevier, vol. 80(C), pages 1-11.
    19. Luxi Jin & Sebastian Schubert & Mohamed Hefny Salim & Christoph Schneider, 2020. "Impact of Air Conditioning Systems on the Outdoor Thermal Environment during Summer in Berlin, Germany," IJERPH, MDPI, vol. 17(13), pages 1-21, June.
    20. Zhou, Xiaohai & Carmeliet, Jan & Sulzer, Matthias & Derome, Dominique, 2020. "Energy-efficient mitigation measures for improving indoor thermal comfort during heat waves," Applied Energy, Elsevier, vol. 278(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:239:y:2019:i:c:p:1091-1113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.