IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v235y2019icp129-138.html
   My bibliography  Save this article

The impact of building operations on urban heat/cool islands under urban densification: A comparison between naturally-ventilated and air-conditioned buildings

Author

Listed:
  • Duan, Shuangping
  • Luo, Zhiwen
  • Yang, Xinyan
  • Li, Yuguo

Abstract

Many cities are suffering the effects of urban heat islands (UHI) or urban cool islands (UCI) due to rapid urban expansion and numerous infrastructure developments. This paper presents a lumped urban-building thermal coupling model which captures the fundamental physical mechanism for thermal interactions between buildings and their urban environment. The benefits of the model are its simplicity and high computational efficiency for practical use in investigating the diurnal urban air temperature change and its asymmetry in a city with both naturally-ventilated (NV) and air-conditioned (AC) buildings. Our model predicts a lower urban heat island and higher urban cool island intensity in a city with naturally-ventilated buildings than for a city with air-conditioned buildings. During the urban densification (from a low-rise, low-density city to a high-rise, high-density one), the increases in the time constant and internal heat gain give rise to asymmetric warming phenomena, which become more obvious in a city with air-conditioned buildings rather than naturally-ventilated ones. Unlike previous studies, we found that a low-rise, low-density city experiences a stronger urban cool island effect than a high-rise, high-density city due to less heat being emitted into the urban atmosphere. The urban cool/heat island effect will firstly increase/decrease, and then rapidly decrease/increase and ultimately disappear/dominate with increasing time constant in the process of urbanization/urban densification.

Suggested Citation

  • Duan, Shuangping & Luo, Zhiwen & Yang, Xinyan & Li, Yuguo, 2019. "The impact of building operations on urban heat/cool islands under urban densification: A comparison between naturally-ventilated and air-conditioned buildings," Applied Energy, Elsevier, vol. 235(C), pages 129-138.
  • Handle: RePEc:eee:appene:v:235:y:2019:i:c:p:129-138
    DOI: 10.1016/j.apenergy.2018.10.108
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918316799
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.10.108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zinzi, Michele & Carnielo, Emiliano & Mattoni, Benedetta, 2018. "On the relation between urban climate and energy performance of buildings. A three-years experience in Rome, Italy," Applied Energy, Elsevier, vol. 221(C), pages 148-160.
    2. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.
    3. Santos, Luis Guilherme Resende & Afshari, Afshin & Norford, Leslie K. & Mao, Jiachen, 2018. "Evaluating approaches for district-wide energy model calibration considering the Urban Heat Island effect," Applied Energy, Elsevier, vol. 215(C), pages 31-40.
    4. Kikegawa, Yukihiro & Genchi, Yutaka & Kondo, Hiroaki & Hanaki, Keisuke, 2006. "Impacts of city-block-scale countermeasures against urban heat-island phenomena upon a building's energy-consumption for air-conditioning," Applied Energy, Elsevier, vol. 83(6), pages 649-668, June.
    5. Berardi, Umberto & GhaffarianHoseini, AmirHosein & GhaffarianHoseini, Ali, 2014. "State-of-the-art analysis of the environmental benefits of green roofs," Applied Energy, Elsevier, vol. 115(C), pages 411-428.
    6. Ihara, Tomohiko & Kikegawa, Yukihiro & Asahi, Kazutake & Genchi, Yutaka & Kondo, Hiroaki, 2008. "Changes in year-round air temperature and annual energy consumption in office building areas by urban heat-island countermeasures and energy-saving measures," Applied Energy, Elsevier, vol. 85(1), pages 12-25, January.
    7. Kikegawa, Yukihiro & Genchi, Yutaka & Yoshikado, Hiroshi & Kondo, Hiroaki, 2003. "Development of a numerical simulation system toward comprehensive assessments of urban warming countermeasures including their impacts upon the urban buildings' energy-demands," Applied Energy, Elsevier, vol. 76(4), pages 449-466, December.
    8. Perera, A.T.D. & Coccolo, Silvia & Scartezzini, Jean-Louis & Mauree, Dasaraden, 2018. "Quantifying the impact of urban climate by extending the boundaries of urban energy system modeling," Applied Energy, Elsevier, vol. 222(C), pages 847-860.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanxue Li & Dawei Wang & Shanshan Li & Weijun Gao, 2021. "Impact Analysis of Urban Morphology on Residential District Heat Energy Demand and Microclimate Based on Field Measurement Data," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    2. Yuhe Ma & Mudan Zhao & Jianbo Li & Jian Wang & Lifa Hu, 2021. "Cooling Effect of Different Land Cover Types: A Case Study in Xi’an and Xianyang, China," Sustainability, MDPI, vol. 13(3), pages 1-16, January.
    3. Taher Safarrad & Mostafa Ghadami & Andreas Dittmann & Mousa Pazhuhan (Panahandeh Khah), 2021. "Tourism Effect on the Spatiotemporal Pattern of Land Surface Temperature (LST): Babolsar and Fereydonkenar Cities (Cases Study in Iran)," Land, MDPI, vol. 10(9), pages 1-25, September.
    4. Chong, Daokun & Zhu, Neng & Luo, Wei & Zhang, Zhiyu, 2019. "Broadening human thermal comfort range based on short-term heat acclimation," Energy, Elsevier, vol. 176(C), pages 418-428.
    5. Hongkai Xie & Jie Li & Yongbin Cai, 2024. "Optimization of External Environment Design for Libraries in Hot and Dry Regions during Summer," Sustainability, MDPI, vol. 16(2), pages 1-19, January.
    6. Mohammed Jibrin Katun & Sulyman Aremu Olanrewaju & Aliyu Abdullahi Alhaji, 2021. "A Spatiotemporal Analysis of Urban Densification in an Organically Growing Urban Area," Baltic Journal of Real Estate Economics and Construction Management, Sciendo, vol. 9(1), pages 94-111, January.
    7. Jaebin Lim & Myounggu Kang, 2022. "The relationship between site planning and electricity consumption: An empirical analysis of multi-unit residential complexes in Seoul, Korea," Environment and Planning B, , vol. 49(3), pages 971-986, March.
    8. Liukuan Zhang & Xiaoxiao Shi & Qing Chang, 2022. "Exploring Adaptive UHI Mitigation Solutions by Spatial Heterogeneity of Land Surface Temperature and Its Relationship to Urban Morphology in Historical Downtown Blocks, Beijing," Land, MDPI, vol. 11(4), pages 1-24, April.
    9. Ningcheng Gao & Hui Zhang & Pei Wang & Ling Ning & Nyuk Hien Wong & Haibo Yu & Zikang Ke, 2023. "Research on Microclimate-Suitable Spatial Patterns of Waterfront Settlements in Summer: A Case Study of the Nan Lake Area in Wuhan, China," Sustainability, MDPI, vol. 15(22), pages 1-26, November.
    10. Patryk Antoszewski & Michał Krzyżaniak & Dariusz Świerk, 2022. "The Future of Climate-Resilient and Climate-Neutral City in the Temperate Climate Zone," IJERPH, MDPI, vol. 19(7), pages 1-60, April.
    11. Baldi, Simone & Zhang, Fan & Le Quang, Thuan & Endel, Petr & Holub, Ondrej, 2019. "Passive versus active learning in operation and adaptive maintenance of Heating, Ventilation, and Air Conditioning," Applied Energy, Elsevier, vol. 252(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kong, Fanhua & Sun, Changfeng & Liu, Fengfeng & Yin, Haiwei & Jiang, Fei & Pu, Yingxia & Cavan, Gina & Skelhorn, Cynthia & Middel, Ariane & Dronova, Iryna, 2016. "Energy saving potential of fragmented green spaces due to their temperature regulating ecosystem services in the summer," Applied Energy, Elsevier, vol. 183(C), pages 1428-1440.
    2. Yang, Xiaoshan & Peng, Lilliana L.H. & Jiang, Zhidian & Chen, Yuan & Yao, Lingye & He, Yunfei & Xu, Tianjing, 2020. "Impact of urban heat island on energy demand in buildings: Local climate zones in Nanjing," Applied Energy, Elsevier, vol. 260(C).
    3. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.
    4. Javanroodi, Kavan & Mahdavinejad, Mohammadjavad & Nik, Vahid M., 2018. "Impacts of urban morphology on reducing cooling load and increasing ventilation potential in hot-arid climate," Applied Energy, Elsevier, vol. 231(C), pages 714-746.
    5. Lee, Louis S.H. & Jim, C.Y., 2019. "Energy benefits of green-wall shading based on novel-accurate apportionment of short-wave radiation components," Applied Energy, Elsevier, vol. 238(C), pages 1506-1518.
    6. Dong-Hyeon Kim & Byeong-Il Ahn & Eui-Gyeong Kim, 2016. "Metropolitan Residents’ Preferences and Willingness to Pay for a Life Zone Forest for Mitigating Heat Island Effects during Summer Season in Korea," Sustainability, MDPI, vol. 8(11), pages 1-15, November.
    7. Hirano, Y. & Fujita, T., 2012. "Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo," Energy, Elsevier, vol. 37(1), pages 371-383.
    8. Xu, Ling & Wang, Jiayu & Xiao, Feipeng & EI-Badawy, Sherif & Awed, Ahmed, 2021. "Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses," Applied Energy, Elsevier, vol. 281(C).
    9. Keirstead, James & Jennings, Mark & Sivakumar, Aruna, 2012. "A review of urban energy system models: Approaches, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3847-3866.
    10. Zinzi, Michele & Carnielo, Emiliano & Mattoni, Benedetta, 2018. "On the relation between urban climate and energy performance of buildings. A three-years experience in Rome, Italy," Applied Energy, Elsevier, vol. 221(C), pages 148-160.
    11. Fabiani, C. & Castaldo, V.L. & Pisello, A.L., 2020. "Thermochromic materials for indoor thermal comfort improvement: Finite difference modeling and validation in a real case-study building," Applied Energy, Elsevier, vol. 262(C).
    12. Shi, Luyang & Luo, Zhiwen & Matthews, Wendy & Wang, Zixuan & Li, Yuguo & Liu, Jing, 2019. "Impacts of urban microclimate on summertime sensible and latent energy demand for cooling in residential buildings of Hong Kong," Energy, Elsevier, vol. 189(C).
    13. Néstor Santillán-Soto & O. Rafael García-Cueto & Alejandro A. Lambert-Arista & Sara Ojeda-Benítez & Samantha E. Cruz-Sotelo, 2019. "Comparative Analysis of Two Urban Microclimates: Energy Consumption and Greenhouse Gas Emissions," Sustainability, MDPI, vol. 11(7), pages 1-11, April.
    14. Meng, Fanchao & Zhang, Lei & Ren, Guoyu & Zhang, Ruixue, 2023. "Impacts of UHI on variations in cooling loads in buildings during heatwaves: A case study of Beijing and Tianjin, China," Energy, Elsevier, vol. 273(C).
    15. Wang, Zhi-Hua & Zhao, Xiaoxi & Yang, Jiachuan & Song, Jiyun, 2016. "Cooling and energy saving potentials of shade trees and urban lawns in a desert city," Applied Energy, Elsevier, vol. 161(C), pages 437-444.
    16. Jim, C.Y., 2014. "Air-conditioning energy consumption due to green roofs with different building thermal insulation," Applied Energy, Elsevier, vol. 128(C), pages 49-59.
    17. Frayssinet, Loïc & Merlier, Lucie & Kuznik, Frédéric & Hubert, Jean-Luc & Milliez, Maya & Roux, Jean-Jacques, 2018. "Modeling the heating and cooling energy demand of urban buildings at city scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2318-2327.
    18. Tremeac, Brice & Bousquet, Pierre & de Munck, Cecile & Pigeon, Gregoire & Masson, Valery & Marchadier, Colette & Merchat, Michele & Poeuf, Pierre & Meunier, Francis, 2012. "Influence of air conditioning management on heat island in Paris air street temperatures," Applied Energy, Elsevier, vol. 95(C), pages 102-110.
    19. Fabiani, C. & Pisello, A.L. & Bou-Zeid, E. & Yang, J. & Cotana, F., 2019. "Adaptive measures for mitigating urban heat islands: The potential of thermochromic materials to control roofing energy balance," Applied Energy, Elsevier, vol. 247(C), pages 155-170.
    20. Ziyi Wang & Zengqiao Chen & Cuiping Ma & Ronald Wennersten & Qie Sun, 2022. "Nationwide Evaluation of Urban Energy System Resilience in China Using a Comprehensive Index Method," Sustainability, MDPI, vol. 14(4), pages 1-36, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:235:y:2019:i:c:p:129-138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.