IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i22p15687-d1275483.html
   My bibliography  Save this article

Research on Microclimate-Suitable Spatial Patterns of Waterfront Settlements in Summer: A Case Study of the Nan Lake Area in Wuhan, China

Author

Listed:
  • Ningcheng Gao

    (School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
    Key Laboratory of Health Intelligent Perception and Ecological Restoration of River and Lake, Ministry of Education, Hubei University of Technology, Wuhan 430068, China)

  • Hui Zhang

    (School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
    Key Laboratory of Health Intelligent Perception and Ecological Restoration of River and Lake, Ministry of Education, Hubei University of Technology, Wuhan 430068, China
    College of Design and Engineering, National University of Singapore, Singapore 117566, Singapore)

  • Pei Wang

    (School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430081, China)

  • Ling Ning

    (School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
    Key Laboratory of Health Intelligent Perception and Ecological Restoration of River and Lake, Ministry of Education, Hubei University of Technology, Wuhan 430068, China)

  • Nyuk Hien Wong

    (College of Design and Engineering, National University of Singapore, Singapore 117566, Singapore)

  • Haibo Yu

    (School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China)

  • Zikang Ke

    (School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China)

Abstract

As China’s urbanization progresses, thermal environmental problems such as the overheating effect experienced by cities are becoming more and more obvious in the daily lives of residents. Urban waterfront spaces not only create pleasant landscape environments and regulate microclimates, but also help to maintain ecological diversity. However, the current high-density urban construction model has led to poor air mobility and weakened water regulation functions in cities. Therefore, the rationalization of the spatial form of settlements has become particularly important in recent times. In this study, the Nan Lake area of Wuhan City was taken as the research object, and it was simulated using ENVI-met (5.5.1) software. Further, the orthogonal experimental design method was combined with the extremum difference analysis method. This study focused on the effects of the layout form (LF), floor area ratio (FAR), green form (GF), and offshore distance (OD) on the temperature (T), relative humidity (RH), and thermal comfort in waterfront settlements in summer. This study found that (1) among the various factors, the effect of the GFs and LFs on the overall microclimate of the study region was the most significant, while the volume ratio had the least significant effect on each indicator. (2) The parallel layout form was found to have better ventilation effects compared to the other three layout forms, with its cooling and humidifying effects being superior. (3) Among the four types of greening combinations, the combination of “grass + shrubs” had the best cooling effect at the height of pedestrians, while trees were able to reduce the heat transfer of solar radiation to the ground due to the shading and evaporation effects provided by their canopies. (4) The cooling and humidifying effects provided by the water body of Nan Lake gradually diminished as the distance from its shore increased; therefore, waterfront settlements maintaining a reasonable proximity to their water bodies will help bring into play the microclimate adjustment effect of such bodies. This study provides a valuable reference for the construction and renewal of urban waterfront settlements in the hot summer and cold winter zones of China (HSCW).

Suggested Citation

  • Ningcheng Gao & Hui Zhang & Pei Wang & Ling Ning & Nyuk Hien Wong & Haibo Yu & Zikang Ke, 2023. "Research on Microclimate-Suitable Spatial Patterns of Waterfront Settlements in Summer: A Case Study of the Nan Lake Area in Wuhan, China," Sustainability, MDPI, vol. 15(22), pages 1-26, November.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:15687-:d:1275483
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/22/15687/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/22/15687/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Han Xu & Xinya Lin & Ying Lin & Guorui Zheng & Jianwen Dong & Minhua Wang, 2022. "Study on the Microclimate Effect of Water Body Layout Factors on Campus Squares," IJERPH, MDPI, vol. 19(22), pages 1-19, November.
    2. Bin Ji & Cheng Liu & Jiechao Liang & Jian Wang, 2021. "Seasonal Succession of Bacterial Communities in Three Eutrophic Freshwater Lakes," IJERPH, MDPI, vol. 18(13), pages 1-11, June.
    3. Yunfang Jiang & Shidan Jiang & Tiemao Shi, 2020. "Comparative Study on the Cooling Effects of Green Space Patterns in Waterfront Build-Up Blocks: An Experience from Shanghai," IJERPH, MDPI, vol. 17(22), pages 1-29, November.
    4. Yunfang Jiang & Jing Huang & Tiemao Shi & Hongxiang Wang, 2021. "Interaction of Urban Rivers and Green Space Morphology to Mitigate the Urban Heat Island Effect: Case-Based Comparative Analysis," IJERPH, MDPI, vol. 18(21), pages 1-29, October.
    5. Duan, Shuangping & Luo, Zhiwen & Yang, Xinyan & Li, Yuguo, 2019. "The impact of building operations on urban heat/cool islands under urban densification: A comparison between naturally-ventilated and air-conditioned buildings," Applied Energy, Elsevier, vol. 235(C), pages 129-138.
    6. Yunfang Jiang & Jing Huang & Tiemao Shi & Xiaolin Li, 2021. "Cooling Island Effect of Blue-Green Corridors: Quantitative Comparison of Morphological Impacts," IJERPH, MDPI, vol. 18(22), pages 1-28, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanxia Hu & Changqing Wang & Jingjing Li, 2023. "Assessment of Heat Mitigation Services Provided by Blue and Green Spaces: An Application of the InVEST Urban Cooling Model with Scenario Analysis in Wuhan, China," Land, MDPI, vol. 12(5), pages 1-21, April.
    2. Yunfang Jiang & Xiaolin Li & Jing Huang, 2022. "Zoning Optimization Method of a Riverfront Greenspace Service Function Oriented to the Cooling Effect: A Case Study in Shanghai," IJERPH, MDPI, vol. 19(23), pages 1-32, December.
    3. Yunfang Jiang & Jing Huang & Tiemao Shi & Xiaolin Li, 2021. "Cooling Island Effect of Blue-Green Corridors: Quantitative Comparison of Morphological Impacts," IJERPH, MDPI, vol. 18(22), pages 1-28, November.
    4. Hongkai Xie & Jie Li & Yongbin Cai, 2024. "Optimization of External Environment Design for Libraries in Hot and Dry Regions during Summer," Sustainability, MDPI, vol. 16(2), pages 1-19, January.
    5. Xiaojia Liu & Xi Chen & Yan Huang & Weihong Wang & Mingkan Zhang & Yang Jin, 2023. "Landscape Aesthetic Value of Waterfront Green Space Based on Space–Psychology–Behavior Dimension: A Case Study along Qiantang River (Hangzhou Section)," IJERPH, MDPI, vol. 20(4), pages 1-22, February.
    6. Mohammed Jibrin Katun & Sulyman Aremu Olanrewaju & Aliyu Abdullahi Alhaji, 2021. "A Spatiotemporal Analysis of Urban Densification in an Organically Growing Urban Area," Baltic Journal of Real Estate Economics and Construction Management, Sciendo, vol. 9(1), pages 94-111, January.
    7. Liukuan Zhang & Xiaoxiao Shi & Qing Chang, 2022. "Exploring Adaptive UHI Mitigation Solutions by Spatial Heterogeneity of Land Surface Temperature and Its Relationship to Urban Morphology in Historical Downtown Blocks, Beijing," Land, MDPI, vol. 11(4), pages 1-24, April.
    8. Qian Dong & Qiuliang Zhang, 2022. "The Estimation of a Remote Sensing Model of Three-Dimensional Green Space Quantity and Research into Its Cooling Effect in Hohhot, China," Land, MDPI, vol. 11(9), pages 1-21, August.
    9. Taher Safarrad & Mostafa Ghadami & Andreas Dittmann & Mousa Pazhuhan (Panahandeh Khah), 2021. "Tourism Effect on the Spatiotemporal Pattern of Land Surface Temperature (LST): Babolsar and Fereydonkenar Cities (Cases Study in Iran)," Land, MDPI, vol. 10(9), pages 1-25, September.
    10. Lihua Chen & Yuan Ma, 2023. "How Do Ecological and Recreational Features of Waterfront Space Affect Its Vitality? Developing Coupling Coordination and Enhancing Waterfront Vitality," IJERPH, MDPI, vol. 20(2), pages 1-18, January.
    11. Jaebin Lim & Myounggu Kang, 2022. "The relationship between site planning and electricity consumption: An empirical analysis of multi-unit residential complexes in Seoul, Korea," Environment and Planning B, , vol. 49(3), pages 971-986, March.
    12. Baldi, Simone & Zhang, Fan & Le Quang, Thuan & Endel, Petr & Holub, Ondrej, 2019. "Passive versus active learning in operation and adaptive maintenance of Heating, Ventilation, and Air Conditioning," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    13. Simon Stork & Bernd Pölling & Wolf Lorleberg & Rolf Morgenstern & Jan-Henning Feil, 2023. "Clustering Business Models of Heterogeneous Nature-Based Solutions Implementing Innovative Governance and Financing Concepts," Land, MDPI, vol. 12(12), pages 1-22, November.
    14. Han Xu & Guorui Zheng & Xinya Lin & Yunfeng Jin, 2024. "Study on the Microclimatic Effects of Plant-Enclosure Conditions and Water–Green Space Ratio on Urban Waterfront Spaces in Summer," Sustainability, MDPI, vol. 16(7), pages 1-20, April.
    15. Jianping Zhang & Gengying Jiao & Qing Ye & Xinren Gu, 2022. "The Impact of Urban Expansion on the Urban Thermal Environment: A Case Study in Nanchang, Jiangxi, China," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
    16. Yuhe Ma & Mudan Zhao & Jianbo Li & Jian Wang & Lifa Hu, 2021. "Cooling Effect of Different Land Cover Types: A Case Study in Xi’an and Xianyang, China," Sustainability, MDPI, vol. 13(3), pages 1-16, January.
    17. Ziyi Liu & Xinyao Ma & Lihui Hu & Yong Liu & Shan Lu & Huilin Chen & Zhe Tan, 2022. "Nonlinear Cooling Effect of Street Green Space Morphology: Evidence from a Gradient Boosting Decision Tree and Explainable Machine Learning Approach," Land, MDPI, vol. 11(12), pages 1-23, December.
    18. Songxin Zheng & Lichen Liu & Xiaofeng Dong & Yanqing Hu & Pengpeng Niu, 2022. "Dominance of Influencing Factors on Cooling Effect of Urban Parks in Different Climatic Regions," IJERPH, MDPI, vol. 19(23), pages 1-17, November.
    19. Yunfang Jiang & Jing Huang & Tiemao Shi & Hongxiang Wang, 2021. "Interaction of Urban Rivers and Green Space Morphology to Mitigate the Urban Heat Island Effect: Case-Based Comparative Analysis," IJERPH, MDPI, vol. 18(21), pages 1-29, October.
    20. Yanxue Li & Dawei Wang & Shanshan Li & Weijun Gao, 2021. "Impact Analysis of Urban Morphology on Residential District Heat Energy Demand and Microclimate Based on Field Measurement Data," Sustainability, MDPI, vol. 13(4), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:15687-:d:1275483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.