IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i3p1099-d484587.html
   My bibliography  Save this article

Cooling Effect of Different Land Cover Types: A Case Study in Xi’an and Xianyang, China

Author

Listed:
  • Yuhe Ma

    (College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China
    Shaanxi Remote Sensing and GIS Engineering Research Center, Xi’an 710127, China)

  • Mudan Zhao

    (College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China
    Shaanxi Remote Sensing and GIS Engineering Research Center, Xi’an 710127, China)

  • Jianbo Li

    (College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China
    Shaanxi Remote Sensing and GIS Engineering Research Center, Xi’an 710127, China)

  • Jian Wang

    (College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China
    Shaanxi Remote Sensing and GIS Engineering Research Center, Xi’an 710127, China)

  • Lifa Hu

    (College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China
    Shaanxi Remote Sensing and GIS Engineering Research Center, Xi’an 710127, China)

Abstract

One of the climate problems caused by rapid urbanization is the urban heat island effect, which directly threatens the human survival environment. In general, some land cover types, such as vegetation and water, are generally considered to alleviate the urban heat island effect, because these landscapes can significantly reduce the temperature of the surrounding environment, known as the cold island effect. However, this phenomenon varies over different geographical locations, climates, and other environmental factors. Therefore, how to reasonably configure these land cover types with the cooling effect from the perspective of urban planning is a great challenge, and it is necessary to find the regularity of this effect by designing experiments in more cities. In this study, land cover (LC) classification and land surface temperature (LST) of Xi’an, Xianyang and its surrounding areas were obtained by Landsat-8 images. The land types with cooling effect were identified and their ideal configuration was discussed through grid analysis, distance analysis, landscape index analysis and correlation analysis. The results showed that an obvious cooling effect occurred in both woodland and water at different spatial scales. The cooling distance of woodland is 330 m, much more than that of water (180 m), but the land surface temperature around water decreased more than that around the woodland within the cooling distance. In the specific urban planning cases, woodland can be designed with a complex shape, high tree planting density and large planting areas while water bodies with large patch areas to cool the densely built-up areas. The results of this study have utility for researchers, urban planners and urban designers seeking how to efficiently and reasonably rearrange landscapes with cooling effect and in urban land design, which is of great significance to improve urban heat island problem.

Suggested Citation

  • Yuhe Ma & Mudan Zhao & Jianbo Li & Jian Wang & Lifa Hu, 2021. "Cooling Effect of Different Land Cover Types: A Case Study in Xi’an and Xianyang, China," Sustainability, MDPI, vol. 13(3), pages 1-16, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1099-:d:484587
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/3/1099/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/3/1099/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. Žuvela-Aloise & R. Koch & S. Buchholz & B. Früh, 2016. "Modelling the potential of green and blue infrastructure to reduce urban heat load in the city of Vienna," Climatic Change, Springer, vol. 135(3), pages 425-438, April.
    2. Roman, Kibria K. & O'Brien, Timothy & Alvey, Jedediah B. & Woo, OhJin, 2016. "Simulating the effects of cool roof and PCM (phase change materials) based roof to mitigate UHI (urban heat island) in prominent US cities," Energy, Elsevier, vol. 96(C), pages 103-117.
    3. repec:asg:wpaper:1039 is not listed on IDEAS
    4. Iman Rousta & Md Omar Sarif & Rajan Dev Gupta & Haraldur Olafsson & Manjula Ranagalage & Yuji Murayama & Hao Zhang & Terence Darlington Mushore, 2018. "Spatiotemporal Analysis of Land Use/Land Cover and Its Effects on Surface Urban Heat Island Using Landsat Data: A Case Study of Metropolitan City Tehran (1988–2018)," Sustainability, MDPI, vol. 10(12), pages 1-25, November.
    5. Duan, Shuangping & Luo, Zhiwen & Yang, Xinyan & Li, Yuguo, 2019. "The impact of building operations on urban heat/cool islands under urban densification: A comparison between naturally-ventilated and air-conditioned buildings," Applied Energy, Elsevier, vol. 235(C), pages 129-138.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jian Wang & Mudan Zhao & Wei Zhong & Jianbo Li & Chunyan Zheng, 2022. "Coupling Relationship of Urban Development and the Eco-Environment in Guanzhong Region, China," Sustainability, MDPI, vol. 14(5), pages 1-17, March.
    2. Yang Lu & Jiansi Yang & Song Ma, 2021. "Dynamic Changes of Local Climate Zones in the Guangdong–Hong Kong–Macao Greater Bay Area and Their Spatio-Temporal Impacts on the Surface Urban Heat Island Effect between 2005 and 2015," Sustainability, MDPI, vol. 13(11), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Auwalu Faisal Koko & Yue Wu & Ghali Abdullahi Abubakar & Akram Ahmed Noman Alabsi & Roknisadeh Hamed & Muhammed Bello, 2021. "Thirty Years of Land Use/Land Cover Changes and Their Impact on Urban Climate: A Study of Kano Metropolis, Nigeria," Land, MDPI, vol. 10(11), pages 1-27, October.
    2. Saafi, Khawla & Daouas, Naouel, 2019. "Energy and cost efficiency of phase change materials integrated in building envelopes under Tunisia Mediterranean climate," Energy, Elsevier, vol. 187(C).
    3. Kirim Lee & Jihoon Seong & Youkyung Han & Won Hee Lee, 2020. "Evaluation of Applicability of Various Color Space Techniques of UAV Images for Evaluating Cool Roof Performance," Energies, MDPI, vol. 13(16), pages 1-12, August.
    4. Mohammed Jibrin Katun & Sulyman Aremu Olanrewaju & Aliyu Abdullahi Alhaji, 2021. "A Spatiotemporal Analysis of Urban Densification in an Organically Growing Urban Area," Baltic Journal of Real Estate Economics and Construction Management, Sciendo, vol. 9(1), pages 94-111, January.
    5. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    6. Atefeh Tamaskani Esfehankalateh & Jack Ngarambe & Geun Young Yun, 2021. "Influence of Tree Canopy Coverage and Leaf Area Density on Urban Heat Island Mitigation," Sustainability, MDPI, vol. 13(13), pages 1-14, July.
    7. Monika Gandhi & Ashok Kumar & Rajasekar Elangovan & Chandan Swaroop Meena & Kishor S. Kulkarni & Anuj Kumar & Garima Bhanot & Nishant R. Kapoor, 2020. "A Review on Shape-Stabilized Phase Change Materials for Latent Energy Storage in Buildings," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    8. Liukuan Zhang & Xiaoxiao Shi & Qing Chang, 2022. "Exploring Adaptive UHI Mitigation Solutions by Spatial Heterogeneity of Land Surface Temperature and Its Relationship to Urban Morphology in Historical Downtown Blocks, Beijing," Land, MDPI, vol. 11(4), pages 1-24, April.
    9. Wang, Chenghao & Wang, Zhi-Hua & Kaloush, Kamil E. & Shacat, Joseph, 2021. "Cool pavements for urban heat island mitigation: A synthetic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    10. Ningcheng Gao & Hui Zhang & Pei Wang & Ling Ning & Nyuk Hien Wong & Haibo Yu & Zikang Ke, 2023. "Research on Microclimate-Suitable Spatial Patterns of Waterfront Settlements in Summer: A Case Study of the Nan Lake Area in Wuhan, China," Sustainability, MDPI, vol. 15(22), pages 1-26, November.
    11. Yu, Jinghua & Leng, Kangxin & Ye, Hong & Xu, Xinhua & Luo, Yongqiang & Wang, Jinbo & Yang, Xie & Yang, Qingchen & Gang, Wenjie, 2020. "Study on thermal insulation characteristics and optimized design of pipe-embedded ventilation roof with outer-layer shape-stabilized PCM in different climate zones," Renewable Energy, Elsevier, vol. 147(P1), pages 1609-1622.
    12. Maren Stollberg & Alexander von Birgelen, 2023. "Living Wall Plants Are Affected by and Affect Temperature: How to (not) Measure Plants’ Temperature in a Living Wall Experiment," Sustainability, MDPI, vol. 15(15), pages 1-39, July.
    13. Gabriele Battista & Emanuele de Lieto Vollaro & Luca Evangelisti & Roberto de Lieto Vollaro, 2022. "Urban Overheating Mitigation Strategies Opportunities: A Case Study of a Square in Rome (Italy)," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    14. Batara Surya & Agus Salim & Hernita Hernita & Seri Suriani & Firman Menne & Emil Salim Rasyidi, 2021. "Land Use Change, Urban Agglomeration, and Urban Sprawl: A Sustainable Development Perspective of Makassar City, Indonesia," Land, MDPI, vol. 10(6), pages 1-31, May.
    15. Ascione, Fabrizio & De Masi, Rosa Francesca & Santamouris, Mattheos & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2018. "Experimental and numerical evaluations on the energy penalty of reflective roofs during the heating season for Mediterranean climate," Energy, Elsevier, vol. 144(C), pages 178-199.
    16. Xu, Bin & Chen, Xing-ni & Fei, Yue & Gan, Wen-tao & Pei, Gang, 2023. "Optimizing the applicability of cool paint through phase change material according to the energy consumption characteristics in different regions," Renewable Energy, Elsevier, vol. 212(C), pages 953-971.
    17. Taher Safarrad & Mostafa Ghadami & Andreas Dittmann & Mousa Pazhuhan (Panahandeh Khah), 2021. "Tourism Effect on the Spatiotemporal Pattern of Land Surface Temperature (LST): Babolsar and Fereydonkenar Cities (Cases Study in Iran)," Land, MDPI, vol. 10(9), pages 1-25, September.
    18. Cláudia M. Viana & Jorge Rocha, 2020. "Evaluating Dominant Land Use/Land Cover Changes and Predicting Future Scenario in a Rural Region Using a Memoryless Stochastic Method," Sustainability, MDPI, vol. 12(10), pages 1-28, May.
    19. Biao Zhang & Dian Shao & Zhonghu Zhang, 2022. "Spatio-Temporal Evolution Dynamic, Effect and Governance Policy of Construction Land Use in Urban Agglomeration: Case Study of Yangtze River Delta, China," Sustainability, MDPI, vol. 14(10), pages 1-36, May.
    20. Ulrich B. Morawetz & H. Allen Klaiber, 2022. "Does housing policy impact income sorting near urban amenities? Evidence from Vienna, Austria," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 69(2), pages 411-454, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1099-:d:484587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.