IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v314y2025ics0360544224040015.html
   My bibliography  Save this article

Electroreflective window with up to 8 °C reduction in indoor temperature for energy saving in buildings

Author

Listed:
  • Jiang, Xin
  • Yuan, Meng
  • Zhang, Jinchao
  • Liu, Yitong
  • Tang, Xin
  • Jiang, Wenlong
  • Yuan, Long
  • Duan, Yu

Abstract

Smart windows, capable of dynamically adjusting solar radiation blockage, offer a promising solution for managing indoor lighting and temperature in buildings, thereby reducing heating, ventilation and air conditioning energy consumption. While reflective smart windows outperform transmissive ones in solar thermal management, creating high-contrast, user-controllable, and rapidly tinting reflective smart windows remains a challenge. In our study, we developed an electroreflective device (ERD) utilizing a reversible silver electrodeposition method. By employing NiO as a counter electrode, we reduced the tinting voltage from −2.015 V to −1.645 V, achieving a remarkable tinting response time of only 7.6 s at a −2.5 V operating voltage. The ERD boasts transmittance and reflectance contrasts of 81.1 % and 74.1 %, respectively, and impressive modulations in solar heat gain coefficient (ΔSHGC) and solar reflectance (ΔRsol) of 0.553 and 0.571. In outdoor solar irradiation tests, the ERD's solar radiation modulation capabilities led to a temperature reduction of 8 °C compared to clear glass. Global climate zone simulations further illustrate the ERD's energy-saving potential, with up to 38.35 % and 29.74 % energy savings in cooling, heating and lighting for Singapore and Changchun (a representative mid-latitude city in the north temperate zone), respectively.

Suggested Citation

  • Jiang, Xin & Yuan, Meng & Zhang, Jinchao & Liu, Yitong & Tang, Xin & Jiang, Wenlong & Yuan, Long & Duan, Yu, 2025. "Electroreflective window with up to 8 °C reduction in indoor temperature for energy saving in buildings," Energy, Elsevier, vol. 314(C).
  • Handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224040015
    DOI: 10.1016/j.energy.2024.134223
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224040015
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134223?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nianpeng Lu & Pengfei Zhang & Qinghua Zhang & Ruimin Qiao & Qing He & Hao-Bo Li & Yujia Wang & Jingwen Guo & Ding Zhang & Zheng Duan & Zhuolu Li & Meng Wang & Shuzhen Yang & Mingzhe Yan & Elke Arenhol, 2017. "Electric-field control of tri-state phase transformation with a selective dual-ion switch," Nature, Nature, vol. 546(7656), pages 124-128, June.
    2. Ahmed, Tariq & Kumar, Prashant & Mottet, Laetitia, 2021. "Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience and indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Wang, Jiayun & Li, Guo & Zhao, Dongliang, 2024. "Multi-objective optimization of an anti-reflection AlN/VO2/AlN thermochromic window for building energy saving," Energy, Elsevier, vol. 288(C).
    4. Michael T. Strand & Tyler S. Hernandez & Michael G. Danner & Andrew L. Yeang & Nathan Jarvey & Christopher J. Barile & Michael D. McGehee, 2021. "Polymer inhibitors enable >900 cm2 dynamic windows based on reversible metal electrodeposition with high solar modulation," Nature Energy, Nature, vol. 6(5), pages 546-554, May.
    5. Kylili, Angeliki & Fokaides, Paris A. & Christou, Petros & Kalogirou, Soteris A., 2014. "Infrared thermography (IRT) applications for building diagnostics: A review," Applied Energy, Elsevier, vol. 134(C), pages 531-549.
    6. Shakirul M. Islam & Tyler S. Hernandez & Michael D. McGehee & Christopher J. Barile, 2019. "Hybrid dynamic windows using reversible metal electrodeposition and ion insertion," Nature Energy, Nature, vol. 4(3), pages 223-229, March.
    7. Field, Edward & Ghosh, Aritra, 2023. "Energy assessment of advanced and switchable windows for less energy-hungry buildings in the UK," Energy, Elsevier, vol. 283(C).
    8. Muhammad Usman & Georg Frey, 2021. "Multi-Objective Techno-Economic Optimization of Design Parameters for Residential Buildings in Different Climate Zones," Sustainability, MDPI, vol. 14(1), pages 1-30, December.
    9. Chenxi Sui & Jiankun Pu & Ting-Hsuan Chen & Jiawei Liang & Yi-Ting Lai & Yunfei Rao & Ronghui Wu & Yu Han & Keyu Wang & Xiuqiang Li & Venkatasubramanian Viswanathan & Po-Chun Hsu, 2023. "Dynamic electrochromism for all-season radiative thermoregulation," Nature Sustainability, Nature, vol. 6(4), pages 428-437, April.
    10. Garrido, I. & Lagüela, S. & Otero, R. & Arias, P., 2020. "Thermographic methodologies used in infrastructure inspection: A review—Post-processing procedures," Applied Energy, Elsevier, vol. 266(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhuofei Jia & Yiming Sui & Long Qian & Xi Ren & Yunxiang Zhao & Rui Yao & Lumeng Wang & Dongliang Chao & Cheng Yang, 2024. "Electrochromic windows with fast response and wide dynamic range for visible-light modulation without traditional electrodes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Eldho Abraham & Vladyslav Cherpak & Bohdan Senyuk & Jan Bart Hove & Taewoo Lee & Qingkun Liu & Ivan I. Smalyukh, 2023. "Highly transparent silanized cellulose aerogels for boosting energy efficiency of glazing in buildings," Nature Energy, Nature, vol. 8(4), pages 381-396, April.
    3. Shanlin Li & Yingyu Chen & Zhen Wang & Mengmeng Wang & Xianglin Guo & Xueqing Tang & Xiaoyu Wang & Wende Lai & Meiyun Tong & Changhong Wang & Shan Cong & Fengxia Geng & Yong Chen & Zhigang Zhao, 2025. "Electrochromism via reversible electrodeposition of solid iodine," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    4. Yangluxi Li & Huishu Chen & Peijun Yu & Li Yang, 2025. "A Review of Artificial Intelligence Applications in Architectural Design: Energy-Saving Renovations and Adaptive Building Envelopes," Energies, MDPI, vol. 18(4), pages 1-24, February.
    5. Zoe Mayer & Julia Heuer & Rebekka Volk & Frank Schultmann, 2021. "Aerial Thermographic Image-Based Assessment of Thermal Bridges Using Representative Classifications and Calculations," Energies, MDPI, vol. 14(21), pages 1-43, November.
    6. Cho, Hyun Mi & Yang, Sungwoong & Wi, Seunghwan & Chang, Seong Jin & Kim, Sumin, 2020. "Hygrothermal and energy retrofit planning of masonry façade historic building used as museum and office: A cultural properties case study," Energy, Elsevier, vol. 201(C).
    7. Hala Sirror, 2024. "Innovative Approaches to Windcatcher Design: A Review on Balancing Tradition Sustainability and Modern Technologies for Enhanced Performance," Energies, MDPI, vol. 17(22), pages 1-27, November.
    8. Ganesh Kumar Balakrishnan & Chong Tak Yaw & Siaw Paw Koh & Tarek Abedin & Avinash Ashwin Raj & Sieh Kiong Tiong & Chai Phing Chen, 2022. "A Review of Infrared Thermography for Condition-Based Monitoring in Electrical Energy: Applications and Recommendations," Energies, MDPI, vol. 15(16), pages 1-37, August.
    9. Si-Zhe Sheng & Jin-Long Wang & Bin Zhao & Zhen He & Xue-Fei Feng & Qi-Guo Shang & Cheng Chen & Gang Pei & Jun Zhou & Jian-Wei Liu & Shu-Hong Yu, 2023. "Nanowire-based smart windows combining electro- and thermochromics for dynamic regulation of solar radiation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Kheira Anissa Tabet Aoul & Rahma Hagi & Rahma Abdelghani & Monaya Syam & Boshra Akhozheya, 2021. "Building Envelope Thermal Defects in Existing and Under-Construction Housing in the UAE; Infrared Thermography Diagnosis and Qualitative Impacts Analysis," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    11. Zhenzhong Yang & Le Wang & Jeffrey A. Dhas & Mark H. Engelhard & Mark E. Bowden & Wen Liu & Zihua Zhu & Chongmin Wang & Scott A. Chambers & Peter V. Sushko & Yingge Du, 2023. "Guided anisotropic oxygen transport in vacancy ordered oxides," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Borys Basok & Anatoliy Pavlenko & Volodymyr Novikov & Hanna Koshlak & Anita Ciosek & Maryna Moroz, 2024. "Comprehensive Investigation of the Thermal Performance of an Electrically Heated Double-Glazed Window: A Theoretical and Experimental Approach," Energies, MDPI, vol. 17(17), pages 1-18, September.
    13. Ji Soo Lim & Ho-Hyun Nahm & Marco Campanini & Jounghee Lee & Yong-Jin Kim & Heung-Sik Park & Jeonghun Suh & Jun Jung & Yongsoo Yang & Tae Yeong Koo & Marta D. Rossell & Yong-Hyun Kim & Chan-Ho Yang, 2022. "Critical ionic transport across an oxygen-vacancy ordering transition," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Kuan-Ting Yeh & Wei-Chieh Hu & Chun-Kuei Chen & Ta-Hui Lin & Feng-Yi Lin & Chung-Chih Cheng & Tzu-Ching Su & Pei-Yu Yu, 2025. "The Influence of Electrochromic Film on Indoor Environmental Quality," Energies, MDPI, vol. 18(10), pages 1-17, May.
    15. Qingsong Ma & Guangwei Qian & Menghui Yu & Lingrui Li & Xindong Wei, 2024. "Performance of Windcatchers in Improving Indoor Air Quality, Thermal Comfort, and Energy Efficiency: A Review," Sustainability, MDPI, vol. 16(20), pages 1-26, October.
    16. Hanna Koshlak & Borys Basok & Anatoliy Pavlenko & Svitlana Goncharuk & Borys Davydenko & Jerzy Piotrowski, 2024. "Experimental and Numerical Studies of Heat Transfer Through a Double-Glazed Window with Electric Heating of the Glass Surface," Sustainability, MDPI, vol. 16(21), pages 1-19, October.
    17. Ibrahim Reda & Raouf N. AbdelMessih & Mohamed Steit & Ehab M. Mina, 2021. "Quantifying Fenestration Effect on Thermal Comfort in Naturally Ventilated Classrooms," Sustainability, MDPI, vol. 13(13), pages 1-22, July.
    18. Almeida, Manuela & Ascione, Fabrizio & Iovane, Teresa & Mastellone, Margherita & Mateus, Ricardo, 2024. "Impact of life cycle assessment analysis on energy efficiency projects in Mediterranean residential buildings," Energy, Elsevier, vol. 295(C).
    19. Wang, Yiping & Fu, Hailing & Huang, Qunwu & Cui, Yong & Sun, Yong & Jiang, Lihong, 2015. "Experimental study of direct contact vaporization heat transfer on n-pentane-water flowing interface," Energy, Elsevier, vol. 93(P1), pages 854-863.
    20. Zhao, Xiaoqing & Wei, An & Zou, Shaokun & Dong, Qichang & Qi, Jiacheng & Song, Ye & Shi, Long, 2024. "Controlling naturally ventilated double-skin façade to reduce energy consumption in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224040015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.