IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61776-0.html
   My bibliography  Save this article

Hydrated ionic polymer for thermochromic smart windows in buildings

Author

Listed:
  • Huaiyuan Wang

    (Harbin Institute of Technology)

  • Yuanwei Lu

    (Harbin Institute of Technology)

  • Jie Wang

    (Harbin Institute of Technology)

  • Tao Qi

    (Harbin Institute of Technology)

  • Xuefeng Tian

    (Harbin Institute of Technology)

  • Chaowei Yang

    (Harbin Institute of Technology)

  • Yuming Huang

    (Harbin Institute of Technology)

  • Meiqi Wang

    (Harbin Institute of Technology)

  • Baiqi Zhang

    (Harbin Institute of Technology)

  • Zhibin Qu

    (Harbin Institute of Technology)

  • Wei Zhou

    (Harbin Institute of Technology)

  • Fei Sun

    (Harbin Institute of Technology)

  • Jihui Gao

    (Harbin Institute of Technology)

  • Guangbo Zhao

    (Harbin Institute of Technology)

Abstract

Thermochromic smart windows offer an efficient solution to reduce building energy consumption by regulating solar radiation without external energy input. However, conventional thermochromic windows often struggle to achieve high luminous transmittance (>70%), strong solar modulation, and an optimal transition temperature (30–40 °C) simultaneously. Here, we present a hydrated ionic polymer thermochromic smart window, which transitions between transparent and blue states through temperature-induced hydration and dehydration. Notably, the smart windows exhibit significant solar modulation (ΔTsol = 30.5%) and high luminous transmittance (Tlum = 87.7%), with an adjustable transition temperature range from 25 °C to 42 °C. Additionally, no significant performance degradation was observed after 200 heating-cooling cycles and 120 days under high-humidity conditions. Field tests showed that the smart windows can reduce indoor temperatures by up to 10 °C compared to clear windows. Simulations indicate a most probable energy-saving efficiency of 11.4% compared to clear windows, with further improvements up to 17.7% when combined with Low-E glass in warm climates. This work delivers a high-performance thermochromic smart window and offers a promising strategy for improving building energy efficiency and promoting global sustainability.

Suggested Citation

  • Huaiyuan Wang & Yuanwei Lu & Jie Wang & Tao Qi & Xuefeng Tian & Chaowei Yang & Yuming Huang & Meiqi Wang & Baiqi Zhang & Zhibin Qu & Wei Zhou & Fei Sun & Jihui Gao & Guangbo Zhao, 2025. "Hydrated ionic polymer for thermochromic smart windows in buildings," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61776-0
    DOI: 10.1038/s41467-025-61776-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61776-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61776-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wen, Jun & Zhao, Xin-Xin & Fu, Qiang & Chang, Chun-Ping, 2023. "The impact of extreme weather events on green innovation: Which ones bring to the most harm?," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    2. Gan Huang & Ashok R. Yengannagari & Kishin Matsumori & Prit Patel & Anurag Datla & Karina Trindade & Enkhlen Amarsanaa & Tonghan Zhao & Uwe Köhler & Dmitry Busko & Bryce S. Richards, 2024. "Radiative cooling and indoor light management enabled by a transparent and self-cleaning polymer-based metamaterial," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Ciulla, G. & D'Amico, A., 2019. "Building energy performance forecasting: A multiple linear regression approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Paulos, Jason & Berardi, Umberto, 2020. "Optimizing the thermal performance of window frames through aerogel-enhancements," Applied Energy, Elsevier, vol. 266(C).
    5. Lance M. Wheeler & David T. Moore & Rachelle Ihly & Noah J. Stanton & Elisa M. Miller & Robert C. Tenent & Jeffrey L. Blackburn & Nathan R. Neale, 2017. "Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    6. Zhang, Y. & Tso, C.Y. & Iñigo, J.S. & Liu, S. & Miyazaki, H. & Chao, Christopher Y.H. & Yu, K.M., 2019. "Perovskite thermochromic smart window: Advanced optical properties and low transition temperature," Applied Energy, Elsevier, vol. 254(C).
    7. Chenxi Sui & Jiankun Pu & Ting-Hsuan Chen & Jiawei Liang & Yi-Ting Lai & Yunfei Rao & Ronghui Wu & Yu Han & Keyu Wang & Xiuqiang Li & Venkatasubramanian Viswanathan & Po-Chun Hsu, 2023. "Dynamic electrochromism for all-season radiative thermoregulation," Nature Sustainability, Nature, vol. 6(4), pages 428-437, April.
    8. Nathaniel C. Johnson & Shang-Ping Xie & Yu Kosaka & Xichen Li, 2018. "Increasing occurrence of cold and warm extremes during the recent global warming slowdown," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    9. Sai Liu & Yang Li & Ying Wang & Yuwei Du & Kin Man Yu & Hin-Lap Yip & Alex K. Y. Jen & Baoling Huang & Chi Yan Tso, 2024. "Mask-inspired moisture-transmitting and durable thermochromic perovskite smart windows," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Si-Zhe Sheng & Jin-Long Wang & Bin Zhao & Zhen He & Xue-Fei Feng & Qi-Guo Shang & Cheng Chen & Gang Pei & Jun Zhou & Jian-Wei Liu & Shu-Hong Yu, 2023. "Nanowire-based smart windows combining electro- and thermochromics for dynamic regulation of solar radiation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sai Liu & Yang Li & Ying Wang & Yuwei Du & Kin Man Yu & Hin-Lap Yip & Alex K. Y. Jen & Baoling Huang & Chi Yan Tso, 2024. "Mask-inspired moisture-transmitting and durable thermochromic perovskite smart windows," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Zhang, Yi & Tennakoon, Thilhara & Chan, Yin Hoi & Chan, Ka Chung & Fu, Sau Chung & Tso, Chi Yan & Yu, Kin Man & Huang, Bao Ling & Yao, Shu Huai & Qiu, Hui He & Chao, Christopher Y.H., 2022. "Energy consumption modelling of a passive hybrid system for office buildings in different climates," Energy, Elsevier, vol. 239(PA).
    3. Wang, Xuanjie & Narayan, Shankar, 2022. "Thermal radiative switching interface for energy-efficient temperature control," Renewable Energy, Elsevier, vol. 197(C), pages 574-582.
    4. Ke, Yujie & Tan, Yutong & Feng, Chengchen & Chen, Cong & Lu, Qi & Xu, Qiyang & Wang, Tao & Liu, Hai & Liu, Xinghai & Peng, Jinqing & Long, Yi, 2022. "Tetra-Fish-Inspired aesthetic thermochromic windows toward Energy-Saving buildings," Applied Energy, Elsevier, vol. 315(C).
    5. Peng Zhou & Guangyang Jiang & Yuyan Wang & Yongqiang Tian & Xinxing Zhang, 2025. "Self-adaptive and large-area sprayable thermal management coatings for energy saving," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    6. Li, Shuliang & Sha, Yong & Wu, Yihui & Gao, Yunrui & He, Miao & Wang, Xiaoliang & Yang, Li & Mai, Xianmin, 2025. "Experimental investigation of indoor lighting/thermal characteristics of highly sensitive mechano-chromic energy-saving windows," Energy, Elsevier, vol. 322(C).
    7. Arkar, C. & Žižak, T. & Domjan, S. & Medved, S., 2020. "Dynamic parametric models for the holistic evaluation of semi-transparent photovoltaic/thermal façade with latent storage inserts," Applied Energy, Elsevier, vol. 280(C).
    8. Ao Yang & Mao Yang & Fuyong Zhang & Aza Azlina Md Kassim & Peixu Wang, 2024. "Has Digital Financial Inclusion Curbed Carbon Emissions Intensity? Considering Technological Innovation and Green Consumption in China," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(4), pages 19127-19156, December.
    9. Alejandra Martínez-Martínez & Rafael Llorca-Vivero, 2025. "The Taxonomy of Climate Change: How Rising Temperatures Unequally Impact Nations’ Discomfort," Working Papers 2507, Department of Applied Economics II, Universidad de Valencia.
    10. Aliyeva, Xeniya & Memon, Shazim Ali & Nazir, Kashif & Kim, Jong, 2024. "Energy consumption forecasting in PCM-integration buildings considering building and environmental parameters for future climate scenarios," Energy, Elsevier, vol. 310(C).
    11. Ole Øiene Smedegård & Thomas Jonsson & Bjørn Aas & Jørn Stene & Laurent Georges & Salvatore Carlucci, 2021. "The Implementation of Multiple Linear Regression for Swimming Pool Facilities: Case Study at Jøa, Norway," Energies, MDPI, vol. 14(16), pages 1-24, August.
    12. Guga, Suri & Bole, Yi & Riao, Dao & Bilige, Sudu & Wei, Sicheng & Li, Kaiwei & Zhang, Jiquan & Tong, Zhijun & Liu, Xingpeng, 2025. "The challenge of chilling injury amid shifting maize planting boundaries: A case study of Northeast China," Agricultural Systems, Elsevier, vol. 222(C).
    13. Wen, Jun & Zhang, Sen & Chang, Chun-Ping & Anugrah, Donni Fajar & Affandi, Yoga, 2023. "Does climate vulnerability promote green investment under energy supply restriction?," Energy Economics, Elsevier, vol. 124(C).
    14. Chen, Jinrui & Zhang, Yichang, 2025. "Substantive change or strategic response? Digital industrial convergence policy and urban green innovation," Innovation and Green Development, Elsevier, vol. 4(1).
    15. Su, Chi Wei & Wei, Shenkai & Wang, Yan & Tao, Ran, 2024. "How does climate policy uncertainty affect the carbon market?," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    16. Yuqing Zhang & Changchun Chen & Yun Niu & Liucheng Shen & Wenyuan Wang, 2023. "The severity of heat and cold waves amplified by high relative humidity in humid subtropical basins: a case study in the Gan River Basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 865-898, January.
    17. Dai, Ting-Yu & Niyogi, Dev & Nagy, Zoltan, 2025. "CityTFT: A temporal fusion transformer-based surrogate model for urban building energy modeling," Applied Energy, Elsevier, vol. 389(C).
    18. Lumbreras, Mikel & Garay-Martinez, Roberto & Arregi, Beñat & Martin-Escudero, Koldobika & Diarce, Gonzalo & Raud, Margus & Hagu, Indrek, 2022. "Data driven model for heat load prediction in buildings connected to District Heating by using smart heat meters," Energy, Elsevier, vol. 239(PD).
    19. Nazir, Kashif & Memon, Shazim Ali & Saurbayeva, Assemgul, 2024. "A novel framework for developing a machine learning-based forecasting model using multi-stage sensitivity analysis to predict the energy consumption of PCM-integrated building," Applied Energy, Elsevier, vol. 376(PA).
    20. H. Pallubinsky & R. P. Kramer & W. D. Marken Lichtenbelt, 2023. "Establishing resilience in times of climate change—a perspective on humans and buildings," Climatic Change, Springer, vol. 176(10), pages 1-19, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61776-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.