IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v266y2020ics0306261920302889.html
   My bibliography  Save this article

Optimizing the thermal performance of window frames through aerogel-enhancements

Author

Listed:
  • Paulos, Jason
  • Berardi, Umberto

Abstract

Windows are often considered the weakest point in building envelopes, especially in buildings with high window-to-wall ratios, where the windows exhibit much higher thermal transmittance than the opaque portion of the walls. The poor thermal performance of windows can largely be attributed to their frames which have higher thermal transmittance than the glazing portions. This study investigates the thermal transmittance of 48 commercially-available high-performance aluminium, fibreglass, polyvinylchloride (PVC) and wood-composite window frames. Then, it focuses on the possible improvements of each frame by inserting aerogel in the frame cavities. Several modifications of the frame cavities are assessed through two-dimensional numerical modelling done according to the ISO 10077-2 standard. This research concludes that filling existing empty cavities of window frames with aerogel granules could reduce the frame thermal transmittance by 4–29% depending on the frame type. Moreover, the complete filling of the cavities with aerogel can further reduce the thermal transmittance by 35%. Finally, for each investigated material, window frames with a thermal transmittance as low as 0.5 W/m2 K are proposed.

Suggested Citation

  • Paulos, Jason & Berardi, Umberto, 2020. "Optimizing the thermal performance of window frames through aerogel-enhancements," Applied Energy, Elsevier, vol. 266(C).
  • Handle: RePEc:eee:appene:v:266:y:2020:i:c:s0306261920302889
    DOI: 10.1016/j.apenergy.2020.114776
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920302889
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114776?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Mangkuto, Rizki A. & Rohmah, Mardliyahtur & Asri, Anindya Dian, 2016. "Design optimisation for window size, orientation, and wall reflectance with regard to various daylight metrics and lighting energy demand: A case study of buildings in the tropics," Applied Energy, Elsevier, vol. 164(C), pages 211-219.
    2. Gao, Tao & Jelle, Bjørn Petter & Ihara, Takeshi & Gustavsen, Arild, 2014. "Insulating glazing units with silica aerogel granules: The impact of particle size," Applied Energy, Elsevier, vol. 128(C), pages 27-34.
    3. Aburas, Marina & Soebarto, Veronica & Williamson, Terence & Liang, Runqi & Ebendorff-Heidepriem, Heike & Wu, Yupeng, 2019. "Thermochromic smart window technologies for building application: A review," Applied Energy, Elsevier, vol. 255(C).
    4. Acosta, Ignacio & Campano, Miguel Ángel & Molina, Juan Francisco, 2016. "Window design in architecture: Analysis of energy savings for lighting and visual comfort in residential spaces," Applied Energy, Elsevier, vol. 168(C), pages 493-506.
    5. Buratti, C. & Moretti, E., 2012. "Experimental performance evaluation of aerogel glazing systems," Applied Energy, Elsevier, vol. 97(C), pages 430-437.
    6. Ibrahim, Mohamad & Biwole, Pascal Henry & Wurtz, Etienne & Achard, Patrick, 2014. "Limiting windows offset thermal bridge losses using a new insulating coating," Applied Energy, Elsevier, vol. 123(C), pages 220-231.
    7. Michaux, Ghislain & Greffet, Rémy & Salagnac, Patrick & Ridoret, Jean-Baptiste, 2019. "Modelling of an airflow window and numerical investigation of its thermal performances by comparison to conventional double and triple-glazed windows," Applied Energy, Elsevier, vol. 242(C), pages 27-45.
    8. Berardi, Umberto, 2015. "The development of a monolithic aerogel glazed window for an energy retrofitting project," Applied Energy, Elsevier, vol. 154(C), pages 603-615.
    9. Berardi, Umberto & Nosrati, Roya Hamideh, 2018. "Long-term thermal conductivity of aerogel-enhanced insulating materials under different laboratory aging conditions," Energy, Elsevier, vol. 147(C), pages 1188-1202.
    10. Cuce, Erdem & Cuce, Pinar Mert & Wood, Christopher J. & Riffat, Saffa B., 2014. "Toward aerogel based thermal superinsulation in buildings: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 273-299.
    11. Buratti, C. & Moretti, E., 2012. "Glazing systems with silica aerogel for energy savings in buildings," Applied Energy, Elsevier, vol. 98(C), pages 396-403.
    12. Baldinelli, G. & Bianchi, F., 2014. "Windows thermal resistance: Infrared thermography aided comparative analysis among finite volumes simulations and experimental methods," Applied Energy, Elsevier, vol. 136(C), pages 250-258.
    13. Sun, Yanyi & Wu, Yupeng & Wilson, Robin, 2018. "A review of thermal and optical characterisation of complex window systems and their building performance prediction," Applied Energy, Elsevier, vol. 222(C), pages 729-747.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Yuekuan, 2022. "A multi-stage supervised learning optimisation approach on an aerogel glazing system with stochastic uncertainty," Energy, Elsevier, vol. 258(C).
    2. Qiu, Yu & Zhang, Yuanting & Li, Qing & Xu, Yucong & Wen, Zhe-Xi, 2020. "A novel parabolic trough receiver enhanced by integrating a transparent aerogel and wing-like mirrors," Applied Energy, Elsevier, vol. 279(C).
    3. Santu Golder & Ramadas Narayanan & Md. Rashed Hossain & Mohammad Rofiqul Islam, 2021. "Experimental and CFD Investigation on the Application for Aerogel Insulation in Buildings," Energies, MDPI, vol. 14(11), pages 1-16, June.
    4. Huaiyuan Wang & Yuanwei Lu & Jie Wang & Tao Qi & Xuefeng Tian & Chaowei Yang & Yuming Huang & Meiqi Wang & Baiqi Zhang & Zhibin Qu & Wei Zhou & Fei Sun & Jihui Gao & Guangbo Zhao, 2025. "Hydrated ionic polymer for thermochromic smart windows in buildings," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    5. Taesub Lim & Woong Seog Yim & Daeung Danny Kim, 2020. "Evaluation of Daylight and Cooling Performance of Shading Devices in Residential Buildings in South Korea," Energies, MDPI, vol. 13(18), pages 1-14, September.
    6. Francesco Asdrubali & Marta Roncone & Gianluca Grazieschi, 2021. "Embodied Energy and Embodied GWP of Windows: A Critical Review," Energies, MDPI, vol. 14(13), pages 1-17, June.
    7. Sai Liu & Yang Li & Ying Wang & Yuwei Du & Kin Man Yu & Hin-Lap Yip & Alex K. Y. Jen & Baoling Huang & Chi Yan Tso, 2024. "Mask-inspired moisture-transmitting and durable thermochromic perovskite smart windows," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Ke, Yujie & Tan, Yutong & Feng, Chengchen & Chen, Cong & Lu, Qi & Xu, Qiyang & Wang, Tao & Liu, Hai & Liu, Xinghai & Peng, Jinqing & Long, Yi, 2022. "Tetra-Fish-Inspired aesthetic thermochromic windows toward Energy-Saving buildings," Applied Energy, Elsevier, vol. 315(C).
    9. Hooman Mehdizadeh-Rad & Taimoor Ahmad Choudhry & Anne W. M. Ng & Zohreh Rajabi & Muhammad Farooq Rais & Asad Zia & Muhammad Atiq Ur Rehman Tariq, 2022. "An Energy Performance Evaluation of Commercially Available Window Glazing in Darwin’s Tropical Climate," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    10. Mesloub, Abdelhakim & Ghosh, Aritra & Touahmia, Mabrouk & Albaqawy, Ghazy Abdullah & Alsolami, Badr M. & Ahriz, Atef, 2022. "Assessment of the overall energy performance of an SPD smart window in a hot desert climate," Energy, Elsevier, vol. 252(C).
    11. Taesub Lim & Daeung Danny Kim, 2022. "Thermal Comfort Assessment of the Perimeter Zones by Using CFD Simulation," Sustainability, MDPI, vol. 14(23), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Yanyi & Wilson, Robin & Wu, Yupeng, 2018. "A Review of Transparent Insulation Material (TIM) for building energy saving and daylight comfort," Applied Energy, Elsevier, vol. 226(C), pages 713-729.
    2. Ibrahim, Mohamad & Biwole, Pascal Henry & Achard, Patrick & Wurtz, Etienne & Ansart, Guillaume, 2015. "Building envelope with a new aerogel-based insulating rendering: Experimental and numerical study, cost analysis, and thickness optimization," Applied Energy, Elsevier, vol. 159(C), pages 490-501.
    3. Berardi, Umberto, 2015. "The development of a monolithic aerogel glazed window for an energy retrofitting project," Applied Energy, Elsevier, vol. 154(C), pages 603-615.
    4. Zhou, Yuekuan & Zheng, Siqian, 2020. "Uncertainty study on thermal and energy performances of a deterministic parameters based optimal aerogel glazing system using machine-learning method," Energy, Elsevier, vol. 193(C).
    5. Zhou, Yuekuan & Zheng, Siqian, 2020. "Climate adaptive optimal design of an aerogel glazing system with the integration of a heuristic teaching-learning-based algorithm in machine learning-based optimization," Renewable Energy, Elsevier, vol. 153(C), pages 375-391.
    6. Berardi, Umberto & Nosrati, Roya Hamideh, 2018. "Long-term thermal conductivity of aerogel-enhanced insulating materials under different laboratory aging conditions," Energy, Elsevier, vol. 147(C), pages 1188-1202.
    7. Baldinelli, G. & Bianchi, F., 2014. "Windows thermal resistance: Infrared thermography aided comparative analysis among finite volumes simulations and experimental methods," Applied Energy, Elsevier, vol. 136(C), pages 250-258.
    8. Zhou, Yuekuan & Zheng, Siqian, 2020. "Stochastic uncertainty-based optimisation on an aerogel glazing building in China using supervised learning surrogate model and a heuristic optimisation algorithm," Renewable Energy, Elsevier, vol. 155(C), pages 810-826.
    9. Liu, Yang & Chen, Youming & Lu, Lin & Peng, Jinqing & Zheng, Dongmei & Lu, Bin, 2023. "Optical path model and energy performance optimization of aerogel glazing system filled with aerogel granules," Applied Energy, Elsevier, vol. 334(C).
    10. Ghosh, Aritra & Norton, Brian, 2018. "Advances in switchable and highly insulating autonomous (self-powered) glazing systems for adaptive low energy buildings," Renewable Energy, Elsevier, vol. 126(C), pages 1003-1031.
    11. Chen, Youming & Xiao, Yaling & Zheng, Siqian & Liu, Yang & Li, Yupeng, 2018. "Dynamic heat transfer model and applicability evaluation of aerogel glazing system in various climates of China," Energy, Elsevier, vol. 163(C), pages 1115-1124.
    12. Cinzia Buratti & Elisa Moretti & Elisa Belloni & Fabrizio Agosti, 2014. "Development of Innovative Aerogel Based Plasters: Preliminary Thermal and Acoustic Performance Evaluation," Sustainability, MDPI, vol. 6(9), pages 1-14, September.
    13. Mary K. Carroll & Ann M. Anderson & Sri Teja Mangu & Zineb Hajjaj & Margeaux Capron, 2022. "Aesthetic Aerogel Window Design for Sustainable Buildings," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    14. Abdul Mujeebu, Muhammad & Ashraf, Noman & Alsuwayigh, Abdulkarim H., 2016. "Effect of nano vacuum insulation panel and nanogel glazing on the energy performance of office building," Applied Energy, Elsevier, vol. 173(C), pages 141-151.
    15. Seok-Hyun Kim & Hakgeun Jeong & Soo Cho, 2019. "A Study on Changes of Window Thermal Performance by Analysis of Physical Test Results in Korea," Energies, MDPI, vol. 12(20), pages 1-17, October.
    16. Cuce, Erdem & Riffat, Saffa B., 2015. "A state-of-the-art review on innovative glazing technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 695-714.
    17. Ihara, Takeshi & Gao, Tao & Grynning, Steinar & Jelle, Bjørn Petter & Gustavsen, Arild, 2015. "Aerogel granulate glazing facades and their application potential from an energy saving perspective," Applied Energy, Elsevier, vol. 142(C), pages 179-191.
    18. Zhiqiang Wang & Qi Tian & Jie Jia, 2021. "Numerical Study on Performance Optimization of an Energy-Saving Insulated Window," Sustainability, MDPI, vol. 13(2), pages 1-25, January.
    19. Zhou, Yuekuan, 2022. "A multi-stage supervised learning optimisation approach on an aerogel glazing system with stochastic uncertainty," Energy, Elsevier, vol. 258(C).
    20. Liu, Yang & Wang, Yujie & Li, Xueling & Chen, Youming & Lu, Lin & Wu, XueHong & Zheng, Huifan, 2025. "Investigation on the optical path of aerogel glazing system based on the 3D structure," Energy, Elsevier, vol. 322(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:266:y:2020:i:c:s0306261920302889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.