IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45047-y.html
   My bibliography  Save this article

Mask-inspired moisture-transmitting and durable thermochromic perovskite smart windows

Author

Listed:
  • Sai Liu

    (City University of Hong Kong)

  • Yang Li

    (Zhejiang University
    Zhejiang University
    The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon)

  • Ying Wang

    (City University of Hong Kong)

  • Yuwei Du

    (City University of Hong Kong)

  • Kin Man Yu

    (City University of Hong Kong)

  • Hin-Lap Yip

    (City University of Hong Kong
    City University of Hong Kong
    City University of Hong Kong)

  • Alex K. Y. Jen

    (City University of Hong Kong
    City University of Hong Kong
    City University of Hong Kong)

  • Baoling Huang

    (The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon)

  • Chi Yan Tso

    (City University of Hong Kong)

Abstract

Thermochromic perovskite smart windows (TPWs) are a cutting-edge energy-efficient window technology. However, like most perovskite-based devices, humidity-related degradation limits their widespread application. Herein, inspired by the structure of medical masks, a unique triple-layer thermochromic perovskite window (MTPW) that enable sufficient water vapor transmission to trigger the thermochromism but effectively repel detrimental water and moisture to extend its lifespan is developed. The MTPW demonstrates superhydrophobicity and maintains a solar modulation ability above 20% during a 45-day aging test, with a decay rate 37 times lower than that of a pristine TPW. It can also immobilize lead ions and significantly reduce lead leakage by 66 times. Furthermore, a significant haze reduction from 90% to 30% is achieved, overcoming the blurriness problem of TPWs. Benefiting from the improved optical performance, extended lifespan, suppressed lead leakage, and facile fabrication, the MTPW pushes forward the wide applications of smart windows in green buildings.

Suggested Citation

  • Sai Liu & Yang Li & Ying Wang & Yuwei Du & Kin Man Yu & Hin-Lap Yip & Alex K. Y. Jen & Baoling Huang & Chi Yan Tso, 2024. "Mask-inspired moisture-transmitting and durable thermochromic perovskite smart windows," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45047-y
    DOI: 10.1038/s41467-024-45047-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45047-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45047-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Aburas, Marina & Soebarto, Veronica & Williamson, Terence & Liang, Runqi & Ebendorff-Heidepriem, Heike & Wu, Yupeng, 2019. "Thermochromic smart window technologies for building application: A review," Applied Energy, Elsevier, vol. 255(C).
    2. Paulos, Jason & Berardi, Umberto, 2020. "Optimizing the thermal performance of window frames through aerogel-enhancements," Applied Energy, Elsevier, vol. 266(C).
    3. Yan Jiang & Longbin Qiu & Emilio J. Juarez-Perez & Luis K. Ono & Zhanhao Hu & Zonghao Liu & Zhifang Wu & Lingqiang Meng & Qijing Wang & Yabing Qi, 2019. "Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation," Nature Energy, Nature, vol. 4(7), pages 585-593, July.
    4. Lance M. Wheeler & David T. Moore & Rachelle Ihly & Noah J. Stanton & Elisa M. Miller & Robert C. Tenent & Jeffrey L. Blackburn & Nathan R. Neale, 2017. "Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    5. Zhang, Y. & Tso, C.Y. & Iñigo, J.S. & Liu, S. & Miyazaki, H. & Chao, Christopher Y.H. & Yu, K.M., 2019. "Perovskite thermochromic smart window: Advanced optical properties and low transition temperature," Applied Energy, Elsevier, vol. 254(C).
    6. Shangshang Chen & Yehao Deng & Hangyu Gu & Shuang Xu & Shen Wang & Zhenhua Yu & Volker Blum & Jinsong Huang, 2020. "Trapping lead in perovskite solar modules with abundant and low-cost cation-exchange resins," Nature Energy, Nature, vol. 5(12), pages 1003-1011, December.
    7. Liu, Sai & Tso, Chi Yan & Du, Yu Wei & Chao, Luke Christopher & Lee, Hau Him & Ho, Tsz Chung & Leung, Michael Kwok Hi, 2021. "Bioinspired thermochromic transparent hydrogel wood with advanced optical regulation abilities and mechanical properties for windows," Applied Energy, Elsevier, vol. 297(C).
    8. Bryan A. Rosales & Laura E. Mundt & Taylor G. Allen & David T. Moore & Kevin J. Prince & Colin A. Wolden & Garry Rumbles & Laura T. Schelhas & Lance M. Wheeler, 2020. "Reversible multicolor chromism in layered formamidinium metal halide perovskites," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    9. Jianing Song & Wenluan Zhang & Zhengnan Sun & Mengyao Pan & Feng Tian & Xiuhong Li & Ming Ye & Xu Deng, 2022. "Durable radiative cooling against environmental aging," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yi & Tennakoon, Thilhara & Chan, Yin Hoi & Chan, Ka Chung & Fu, Sau Chung & Tso, Chi Yan & Yu, Kin Man & Huang, Bao Ling & Yao, Shu Huai & Qiu, Hui He & Chao, Christopher Y.H., 2022. "Energy consumption modelling of a passive hybrid system for office buildings in different climates," Energy, Elsevier, vol. 239(PA).
    2. Ke, Yujie & Tan, Yutong & Feng, Chengchen & Chen, Cong & Lu, Qi & Xu, Qiyang & Wang, Tao & Liu, Hai & Liu, Xinghai & Peng, Jinqing & Long, Yi, 2022. "Tetra-Fish-Inspired aesthetic thermochromic windows toward Energy-Saving buildings," Applied Energy, Elsevier, vol. 315(C).
    3. Bahram Abdollahi Nejand & David B. Ritzer & Hang Hu & Fabian Schackmar & Somayeh Moghadamzadeh & Thomas Feeney & Roja Singh & Felix Laufer & Raphael Schmager & Raheleh Azmi & Milian Kaiser & Tobias Ab, 2022. "Scalable two-terminal all-perovskite tandem solar modules with a 19.1% efficiency," Nature Energy, Nature, vol. 7(7), pages 620-630, July.
    4. Tong Wang & Jiabao Yang & Qi Cao & Xingyu Pu & Yuke Li & Hui Chen & Junsong Zhao & Yixin Zhang & Xingyuan Chen & Xuanhua Li, 2023. "Room temperature nondestructive encapsulation via self-crosslinked fluorosilicone polymer enables damp heat-stable sustainable perovskite solar cells," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Jiang, Tengyao & Zhao, Xinpeng & Yin, Xiaobo & Yang, Ronggui & Tan, Gang, 2021. "Dynamically adaptive window design with thermo-responsive hydrogel for energy efficiency," Applied Energy, Elsevier, vol. 287(C).
    6. Sun, Yanyi & Liu, Xin & Ming, Yang & Liu, Xiao & Mahon, Daniel & Wilson, Robin & Liu, Hao & Eames, Philip & Wu, Yupeng, 2021. "Energy and daylight performance of a smart window: Window integrated with thermotropic parallel slat-transparent insulation material," Applied Energy, Elsevier, vol. 293(C).
    7. Shen, Yi & Xue, Peng & Luo, Tao & Zhang, Yanyun & Tso, Chi Yan & Zhang, Nan & Sun, Yuying & Xie, Jingchao & Liu, Jiaping, 2022. "Regional applicability of thermochromic windows based on dynamic radiation spectrum," Renewable Energy, Elsevier, vol. 196(C), pages 15-27.
    8. Garlisi, Corrado & Trepci, Esra & Li, Xuan & Al Sakkaf, Reem & Al-Ali, Khalid & Nogueira, Ricardo Pereira & Zheng, Lianxi & Azar, Elie & Palmisano, Giovanni, 2020. "Multilayer thin film structures for multifunctional glass: Self-cleaning, antireflective and energy-saving properties," Applied Energy, Elsevier, vol. 264(C).
    9. Wang, Xuanjie & Narayan, Shankar, 2022. "Thermal radiative switching interface for energy-efficient temperature control," Renewable Energy, Elsevier, vol. 197(C), pages 574-582.
    10. Liu, Sai & Tso, Chi Yan & Du, Yu Wei & Chao, Luke Christopher & Lee, Hau Him & Ho, Tsz Chung & Leung, Michael Kwok Hi, 2021. "Bioinspired thermochromic transparent hydrogel wood with advanced optical regulation abilities and mechanical properties for windows," Applied Energy, Elsevier, vol. 297(C).
    11. Bo Chen & Chengbin Fei & Shangshang Chen & Hangyu Gu & Xun Xiao & Jinsong Huang, 2021. "Recycling lead and transparent conductors from perovskite solar modules," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    12. Zhao, Xinpeng & Mofid, Sohrab Alex & Jelle, Bjørn Petter & Tan, Gang & Yin, Xiaobo & Yang, Ronggui, 2020. "Optically-switchable thermally-insulating VO2-aerogel hybrid film for window retrofits," Applied Energy, Elsevier, vol. 278(C).
    13. Anatoliy M. Pavlenko & Karolina Sadko, 2023. "Evaluation of Numerical Methods for Predicting the Energy Performance of Windows," Energies, MDPI, vol. 16(3), pages 1-23, February.
    14. Yang, Sungwoong & Cho, Hyun Mi & Yun, Beom Yeol & Hong, Taehoon & Kim, Sumin, 2021. "Energy usage and cost analysis of passive thermal retrofits for low-rise residential buildings in Seoul," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    15. Jungwon Yoon & Sanghyun Bae, 2020. "Performance Evaluation and Design of Thermo-Responsive SMP Shading Prototypes," Sustainability, MDPI, vol. 12(11), pages 1-35, May.
    16. Michalis Michael & Fabio Favoino & Qian Jin & Alessandra Luna-Navarro & Mauro Overend, 2023. "A Systematic Review and Classification of Glazing Technologies for Building Façades," Energies, MDPI, vol. 16(14), pages 1-47, July.
    17. Yongjie Liu & Chen Tao & Yu Cao & Liangyan Chen & Shuxin Wang & Pei Li & Cheng Wang & Chenwei Liu & Feihong Ye & Shengyong Hu & Meng Xiao & Zheng Gao & Pengbing Gui & Fang Yao & Kailian Dong & Jiashua, 2022. "Synergistic passivation and stepped-dimensional perovskite analogs enable high-efficiency near-infrared light-emitting diodes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Daniel Mann & Cindy Yeung & Roberto Habets & Zeger Vroon & Pascal Buskens, 2020. "Comparative Building Energy Simulation Study of Static and Thermochromically Adaptive Energy-Efficient Glazing in Various Climate Regions," Energies, MDPI, vol. 13(11), pages 1-17, June.
    19. Xueke Wu & Jinlei Li & Fei Xie & Xun-En Wu & Siming Zhao & Qinyuan Jiang & Shiliang Zhang & Baoshun Wang & Yunrui Li & Di Gao & Run Li & Fei Wang & Ya Huang & Yanlong Zhao & Yingying Zhang & Wei Li & , 2024. "A dual-selective thermal emitter with enhanced subambient radiative cooling performance," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Lianhu Xiong & Yun Wei & Chuanliang Chen & Xin Chen & Qiang Fu & Hua Deng, 2023. "Thin lamellar films with enhanced mechanical properties for durable radiative cooling," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45047-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.