IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v197y2022icp574-582.html
   My bibliography  Save this article

Thermal radiative switching interface for energy-efficient temperature control

Author

Listed:
  • Wang, Xuanjie
  • Narayan, Shankar

Abstract

Materials with dynamically switchable optical properties can modulate their interaction with sunlight, potentially saving significant energy for heating and air-conditioning if used as building exteriors. This study proposes a new technique for solar-thermal regulation using porous polytetrafluoroethylene (PTFE) layers integrated with a spectrally-selective absorber (PTFE-SS). This multilayered structure can provide tunable optical properties by wetting or dewetting the porous PTFE with a refractive index-matching liquid, allowing a highly reversible change in solar transmittance of 0.62. This variation allows the multilayered structure to switch between highly reflecting and absorbing states that is tunable using different PTFE thicknesses. With this multilayered structure as building exteriors, sunlight can be reflected or absorbed to reduce dependence on conventional heating and cooling systems driven by non-renewable primary energy sources. When exposed to 1 sun illumination under ideal conditions, this variation allows a 51 °C change in PTFE-SS steady temperatures. When applied to buildings as roofing materials, the PTFE-SS promises significant energy reduction with annual cooling and heating savings of around 77% and 27%, respectively. Hence, the proposed PTFE-SS structure presents a new paradigm for passive thermal management of buildings by controlling their interaction with sunlight and decreasing our dependence on fossil fuels.

Suggested Citation

  • Wang, Xuanjie & Narayan, Shankar, 2022. "Thermal radiative switching interface for energy-efficient temperature control," Renewable Energy, Elsevier, vol. 197(C), pages 574-582.
  • Handle: RePEc:eee:renene:v:197:y:2022:i:c:p:574-582
    DOI: 10.1016/j.renene.2022.07.143
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122011478
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.07.143?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lyu Zhou & Haomin Song & Jianwei Liang & Matthew Singer & Ming Zhou & Edgars Stegenburgs & Nan Zhang & Chen Xu & Tien Ng & Zongfu Yu & Boon Ooi & Qiaoqiang Gan, 2019. "A polydimethylsiloxane-coated metal structure for all-day radiative cooling," Nature Sustainability, Nature, vol. 2(8), pages 718-724, August.
    2. Aaswath P. Raman & Marc Abou Anoma & Linxiao Zhu & Eden Rephaeli & Shanhui Fan, 2014. "Passive radiative cooling below ambient air temperature under direct sunlight," Nature, Nature, vol. 515(7528), pages 540-544, November.
    3. Erica M. Leung & Melvin Colorado Escobar & George T. Stiubianu & Steven R. Jim & Alexandra L. Vyatskikh & Zhijing Feng & Nicholas Garner & Priyam Patel & Kyle L. Naughton & Maurizio Follador & Emil Ka, 2019. "A dynamic thermoregulatory material inspired by squid skin," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    4. Lance M. Wheeler & David T. Moore & Rachelle Ihly & Noah J. Stanton & Elisa M. Miller & Robert C. Tenent & Jeffrey L. Blackburn & Nathan R. Neale, 2017. "Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    5. Zhang, Y. & Tso, C.Y. & Iñigo, J.S. & Liu, S. & Miyazaki, H. & Chao, Christopher Y.H. & Yu, K.M., 2019. "Perovskite thermochromic smart window: Advanced optical properties and low transition temperature," Applied Energy, Elsevier, vol. 254(C).
    6. Bikram Bhatia & Arny Leroy & Yichen Shen & Lin Zhao & Melissa Gianello & Duanhui Li & Tian Gu & Juejun Hu & Marin Soljačić & Evelyn N. Wang, 2018. "Passive directional sub-ambient daytime radiative cooling," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    7. Xiuqiang Li & Bowen Sun & Chenxi Sui & Ankita Nandi & Haoming Fang & Yucan Peng & Gang Tan & Po-Chun Hsu, 2020. "Integration of daytime radiative cooling and solar heating for year-round energy saving in buildings," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    8. Fang, Hong & Zhao, Dongliang & Yuan, Jinchao & Aili, Ablimit & Yin, Xiaobo & Yang, Ronggui & Tan, Gang, 2019. "Performance evaluation of a metamaterial-based new cool roof using improved Roof Thermal Transfer Value model," Applied Energy, Elsevier, vol. 248(C), pages 589-599.
    9. Zhen Chen & Linxiao Zhu & Aaswath Raman & Shanhui Fan, 2016. "Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle," Nature Communications, Nature, vol. 7(1), pages 1-5, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pirvaram, Atousa & Talebzadeh, Nima & Leung, Siu Ning & O'Brien, Paul G., 2022. "Radiative cooling for buildings: A review of techno-enviro-economics and life-cycle assessment methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Liu, Junwei & Zhang, Ji & Zhang, Debao & Jiao, Shifei & Xing, Jincheng & Tang, Huajie & Zhang, Ying & Li, Shuai & Zhou, Zhihua & Zuo, Jian, 2020. "Sub-ambient radiative cooling with wind cover," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    3. Xueke Wu & Jinlei Li & Fei Xie & Xun-En Wu & Siming Zhao & Qinyuan Jiang & Shiliang Zhang & Baoshun Wang & Yunrui Li & Di Gao & Run Li & Fei Wang & Ya Huang & Yanlong Zhao & Yingying Zhang & Wei Li & , 2024. "A dual-selective thermal emitter with enhanced subambient radiative cooling performance," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Kit-Ying Chan & Xi Shen & Jie Yang & Keng-Te Lin & Harun Venkatesan & Eunyoung Kim & Heng Zhang & Jeng-Hun Lee & Jinhong Yu & Jinglei Yang & Jang-Kyo Kim, 2022. "Scalable anisotropic cooling aerogels by additive freeze-casting," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Quan Zhang & Yiwen Lv & Yufeng Wang & Shixiong Yu & Chenxi Li & Rujun Ma & Yongsheng Chen, 2022. "Temperature-dependent dual-mode thermal management device with net zero energy for year-round energy saving," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Peoples, Joseph & Hung, Yu-Wei & Li, Xiangyu & Gallagher, Daniel & Fruehe, Nathan & Pottschmidt, Mason & Breseman, Cole & Adams, Conrad & Yuksel, Anil & Braun, James & Horton, W. Travis & Ruan, Xiulin, 2022. "Concentrated radiative cooling," Applied Energy, Elsevier, vol. 310(C).
    7. Jianing Song & Wenluan Zhang & Zhengnan Sun & Mengyao Pan & Feng Tian & Xiuhong Li & Ming Ye & Xu Deng, 2022. "Durable radiative cooling against environmental aging," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Zhang, Ji & Yuan, Jianjuan & Liu, Junwei & Zhou, Zhihua & Sui, Jiyuan & Xing, Jincheng & Zuo, Jian, 2021. "Cover shields for sub-ambient radiative cooling: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    9. Zhang, Yi & Tennakoon, Thilhara & Chan, Yin Hoi & Chan, Ka Chung & Fu, Sau Chung & Tso, Chi Yan & Yu, Kin Man & Huang, Bao Ling & Yao, Shu Huai & Qiu, Hui He & Chao, Christopher Y.H., 2022. "Energy consumption modelling of a passive hybrid system for office buildings in different climates," Energy, Elsevier, vol. 239(PA).
    10. Zhao, Bin & Liu, Jie & Hu, Mingke & Ao, Xianze & Li, Lanxin & Xuan, Qingdong & Pei, Gang, 2023. "Performance analysis of a broadband selective absorber/emitter for hybrid utilization of solar thermal and radiative cooling," Renewable Energy, Elsevier, vol. 205(C), pages 763-771.
    11. Lianhu Xiong & Yun Wei & Chuanliang Chen & Xin Chen & Qiang Fu & Hua Deng, 2023. "Thin lamellar films with enhanced mechanical properties for durable radiative cooling," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Wang, Cun-Hai & Chen, Hao & Jiang, Ze-Yi & Zhang, Xin-Xin & Wang, Fu-Qiang, 2023. "Modelling and performance evaluation of a novel passive thermoelectric system based on radiative cooling and solar heating for 24-hour power-generation," Applied Energy, Elsevier, vol. 331(C).
    13. Shan, He & Poredoš, Primož & Zou, Hao & Lv, Haotian & Wang, Ruzhu, 2023. "Perspectives for urban microenvironment sustainability enabled by decentralized water-energy-food harvesting," Energy, Elsevier, vol. 282(C).
    14. Mikhail Vasiliev & Mohammad Nur-E-Alam & Kamal Alameh, 2019. "Recent Developments in Solar Energy-Harvesting Technologies for Building Integration and Distributed Energy Generation," Energies, MDPI, vol. 12(6), pages 1-23, March.
    15. Sai Liu & Yang Li & Ying Wang & Yuwei Du & Kin Man Yu & Hin-Lap Yip & Alex K. Y. Jen & Baoling Huang & Chi Yan Tso, 2024. "Mask-inspired moisture-transmitting and durable thermochromic perovskite smart windows," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Wang, Cun-Hai & Chen, Hao & Jiang, Ze-Yi & Zhang, Xin-Xin, 2023. "Design and experimental validation of an all-day passive thermoelectric system via radiative cooling and greenhouse effects," Energy, Elsevier, vol. 263(PA).
    17. Lv, Song & Ji, Yishuang & Qian, Zuoqin & He, Wei & Hu, Zhongting & Liu, Minghou, 2021. "A novel strategy of enhancing sky radiative cooling by solar photovoltaic-thermoelectric cooler," Energy, Elsevier, vol. 219(C).
    18. Bijarniya, Jay Prakash & Sarkar, Jahar, 2020. "Climate change effect on the cooling performance and assessment of passive daytime photonic radiative cooler in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    19. Chi, Fang'ai & Liu, Yang & Yan, Jianxiong, 2021. "Integration of Radiative-based air temperature regulating system into residential building for energy saving," Applied Energy, Elsevier, vol. 301(C).
    20. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Xuan, Qingdong & Su, Yuehong & Pei, Gang, 2019. "A novel strategy for a building-integrated diurnal photovoltaic and all-day radiative cooling system," Energy, Elsevier, vol. 183(C), pages 892-900.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:197:y:2022:i:c:p:574-582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.