IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-07293-9.html
   My bibliography  Save this article

Passive directional sub-ambient daytime radiative cooling

Author

Listed:
  • Bikram Bhatia

    (Massachusetts Institute of Technology)

  • Arny Leroy

    (Massachusetts Institute of Technology)

  • Yichen Shen

    (Massachusetts Institute of Technology)

  • Lin Zhao

    (Massachusetts Institute of Technology)

  • Melissa Gianello

    (Massachusetts Institute of Technology)

  • Duanhui Li

    (Massachusetts Institute of Technology)

  • Tian Gu

    (Massachusetts Institute of Technology)

  • Juejun Hu

    (Massachusetts Institute of Technology)

  • Marin Soljačić

    (Massachusetts Institute of Technology)

  • Evelyn N. Wang

    (Massachusetts Institute of Technology)

Abstract

Demonstrations of passive daytime radiative cooling have primarily relied on complex and costly spectrally selective nanophotonic structures with high emissivity in the transparent atmospheric spectral window and high reflectivity in the solar spectrum. Here, we show a directional approach to passive radiative cooling that exploits the angular confinement of solar irradiation in the sky to achieve sub-ambient cooling during the day regardless of the emitter properties in the solar spectrum. We experimentally demonstrate this approach using a setup comprising a polished aluminum disk that reflects direct solar irradiation and a white infrared-transparent polyethylene convection cover that minimizes diffuse solar irradiation. Measurements performed around solar noon show a minimum temperature of 6 °C below ambient temperature and maximum cooling power of 45 W m–2. Our passive cooling approach, realized using commonly available low-cost materials, could improve the performance of existing cooling systems and enable next-generation thermal management and refrigeration solutions.

Suggested Citation

  • Bikram Bhatia & Arny Leroy & Yichen Shen & Lin Zhao & Melissa Gianello & Duanhui Li & Tian Gu & Juejun Hu & Marin Soljačić & Evelyn N. Wang, 2018. "Passive directional sub-ambient daytime radiative cooling," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07293-9
    DOI: 10.1038/s41467-018-07293-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-07293-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-07293-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Ji & Yuan, Jianjuan & Liu, Junwei & Zhou, Zhihua & Sui, Jiyuan & Xing, Jincheng & Zuo, Jian, 2021. "Cover shields for sub-ambient radiative cooling: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Xuan, Qingdong & Su, Yuehong & Pei, Gang, 2019. "A novel strategy for a building-integrated diurnal photovoltaic and all-day radiative cooling system," Energy, Elsevier, vol. 183(C), pages 892-900.
    3. Wang, Xuanjie & Narayan, Shankar, 2022. "Thermal radiative switching interface for energy-efficient temperature control," Renewable Energy, Elsevier, vol. 197(C), pages 574-582.
    4. Chen, Siru & Lin, Kaixin & Pan, Aiqiang & Ho, Tsz Chung & Zhu, Yihao & Tso, Chi Yan, 2023. "Study of a passive radiative cooling coating on chemical storage tanks for evaporative loss control," Renewable Energy, Elsevier, vol. 211(C), pages 326-335.
    5. Kit-Ying Chan & Xi Shen & Jie Yang & Keng-Te Lin & Harun Venkatesan & Eunyoung Kim & Heng Zhang & Jeng-Hun Lee & Jinhong Yu & Jinglei Yang & Jang-Kyo Kim, 2022. "Scalable anisotropic cooling aerogels by additive freeze-casting," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Xuan, Qingdong & Jiao, Dongsheng & Pei, Gang, 2019. "Performance analysis of a hybrid system combining photovoltaic and nighttime radiative cooling," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    7. Lv, Song & Ji, Yishuang & Qian, Zuoqin & He, Wei & Hu, Zhongting & Liu, Minghou, 2021. "A novel strategy of enhancing sky radiative cooling by solar photovoltaic-thermoelectric cooler," Energy, Elsevier, vol. 219(C).
    8. Fabiani, Claudia & Gambucci, Marta & Chiatti, Chiara & Zampini, Giulia & Latterini, Loredana & Pisello, Anna Laura, 2022. "Towards field implementation of photoluminescence in the built environment for passive cooling and lighting energy efficiency," Applied Energy, Elsevier, vol. 324(C).
    9. Liu, Junwei & Zhang, Ji & Zhang, Debao & Jiao, Shifei & Xing, Jincheng & Tang, Huajie & Zhang, Ying & Li, Shuai & Zhou, Zhihua & Zuo, Jian, 2020. "Sub-ambient radiative cooling with wind cover," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    10. Lianhu Xiong & Yun Wei & Chuanliang Chen & Xin Chen & Qiang Fu & Hua Deng, 2023. "Thin lamellar films with enhanced mechanical properties for durable radiative cooling," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Pirvaram, Atousa & Talebzadeh, Nima & Leung, Siu Ning & O'Brien, Paul G., 2022. "Radiative cooling for buildings: A review of techno-enviro-economics and life-cycle assessment methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07293-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.