IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225008771.html
   My bibliography  Save this article

In situ testing and model optimization of a smart façade system for zero carbon and enhanced comfort in buildings

Author

Listed:
  • Ming, Yang
  • Hu, Mingke
  • Yuan, Yanping
  • Wu, Yupeng

Abstract

Integrating Thermotropic materials into the Parallel Slat-Transparent Insulation Material (TT PS-TIM) double-glazed system enhances indoor daylight comfort and reduces energy consumption through solar regulation and improved thermal resistance. However, the dynamic nature of the system is crucial to determine the daylight and energy performance as the transition between its clear and translucent states results in significant variations in solar transmission/absorption. This study assessed the dynamic optical and thermal performance of the developed system through outdoor experiment. An optimized numerical model for its dynamic state prediction was developed incorporating factors of window surface temperature and slats solar absorption, and validated experimentally, therefore improve the accuracy of dynamic state prediction and further annual building energy consumption. Findings revealed that TT PS-TIM outperformed traditional systems in solar regulation. Meanwhile, the slat-temperature from optimized model showcased a good agreement with experiment data with a deviation of less than 1.3 °C (4.1%). Compared with optimized model, the current simplified model indicated a significantly error for the dynamic state of the TT PS-TIM system, with differences ranging from 23.83% to 64.82% for annual translucent duration, affected by locations, window-to-wall ratios, and slat intervals, leading to increased cooling energy consumption and slight decreases in heating/lighting energy use.

Suggested Citation

  • Ming, Yang & Hu, Mingke & Yuan, Yanping & Wu, Yupeng, 2025. "In situ testing and model optimization of a smart façade system for zero carbon and enhanced comfort in buildings," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225008771
    DOI: 10.1016/j.energy.2025.135235
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225008771
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135235?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Xing & Chen, Xing-ni & Xu, Bin & Pei, Gang, 2022. "Investigation of occupied/unoccupied period on thermal comfort in Guangzhou: Challenges and opportunities of public buildings with high window-wall ratio," Energy, Elsevier, vol. 244(PB).
    2. Pu, Jihong & Han, Miao & Lu, Lin & Shen, Chao & Wang, Fang, 2024. "Spectrally selective design and energy-saving demonstration of a novel liquid-filled window in hot and humid region," Energy, Elsevier, vol. 297(C).
    3. Karen Connelly & Yupeng Wu & Xiaoyu Ma & Yu Lei, 2017. "Transmittance and Reflectance Studies of Thermotropic Material for a Novel Building Integrated Concentrating Photovoltaic (BICPV) ‘Smart Window’ System," Energies, MDPI, vol. 10(11), pages 1-13, November.
    4. Pu, Jin Huan & Yu, Xiyu & Zhao, Yuewen & Tang, G.H. & Ren, Xingjie & Du, Mu, 2023. "Dynamic aerogel window with switchable solar transmittance and low haze," Energy, Elsevier, vol. 285(C).
    5. Wang, Jiayun & Li, Guo & Zhao, Dongliang, 2024. "Multi-objective optimization of an anti-reflection AlN/VO2/AlN thermochromic window for building energy saving," Energy, Elsevier, vol. 288(C).
    6. Zhang, Y. & Tso, C.Y. & Iñigo, J.S. & Liu, S. & Miyazaki, H. & Chao, Christopher Y.H. & Yu, K.M., 2019. "Perovskite thermochromic smart window: Advanced optical properties and low transition temperature," Applied Energy, Elsevier, vol. 254(C).
    7. Liu, Xiao & Wu, Yupeng, 2021. "Experimental characterisation of a smart glazing with tuneable transparency, light scattering ability and electricity generation function," Applied Energy, Elsevier, vol. 303(C).
    8. Field, Edward & Ghosh, Aritra, 2023. "Energy assessment of advanced and switchable windows for less energy-hungry buildings in the UK," Energy, Elsevier, vol. 283(C).
    9. Sun, Yanyi & Liu, Xin & Ming, Yang & Liu, Xiao & Mahon, Daniel & Wilson, Robin & Liu, Hao & Eames, Philip & Wu, Yupeng, 2021. "Energy and daylight performance of a smart window: Window integrated with thermotropic parallel slat-transparent insulation material," Applied Energy, Elsevier, vol. 293(C).
    10. Li, Xue & Sun, Yanyi & Liu, Xiao & Ming, Yang & Wu, Yupeng, 2024. "Development of a comprehensive method to estimate the optical, thermal and electrical performance of a complex PV window for building integration," Energy, Elsevier, vol. 294(C).
    11. Wang, Chuyao & Li, Niansi & Gu, Tao & Ji, Jie & Yu, Bendong, 2022. "Design and performance investigation of a novel double-skin ventilated window integrated with air-purifying blind," Energy, Elsevier, vol. 254(PC).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xue & Sun, Yanyi & Liu, Xiao & Ming, Yang & Wu, Yupeng, 2024. "Development of a comprehensive method to estimate the optical, thermal and electrical performance of a complex PV window for building integration," Energy, Elsevier, vol. 294(C).
    2. Liu, Yang & Wang, Yujie & Li, Xueling & Chen, Youming & Lu, Lin & Wu, XueHong & Zheng, Huifan, 2025. "Investigation on the optical path of aerogel glazing system based on the 3D structure," Energy, Elsevier, vol. 322(C).
    3. Pu, Jihong & Li, Yingxiao & Xu, Dan & Shen, Chao & Lu, Lin, 2025. "A quantitative investigation on the cooling benefits of retrofitting building skylights with broadband-spectrum selectivity in China," Applied Energy, Elsevier, vol. 381(C).
    4. Jiang, Xin & Yuan, Meng & Zhang, Jinchao & Liu, Yitong & Tang, Xin & Jiang, Wenlong & Yuan, Long & Duan, Yu, 2025. "Electroreflective window with up to 8 °C reduction in indoor temperature for energy saving in buildings," Energy, Elsevier, vol. 314(C).
    5. Hossein Arasteh & Wahid Maref & Hamed H. Saber, 2023. "Energy and Thermal Performance Analysis of PCM-Incorporated Glazing Units Combined with Passive and Active Techniques: A Review Study," Energies, MDPI, vol. 16(3), pages 1-42, January.
    6. Ke, Yujie & Tan, Yutong & Feng, Chengchen & Chen, Cong & Lu, Qi & Xu, Qiyang & Wang, Tao & Liu, Hai & Liu, Xinghai & Peng, Jinqing & Long, Yi, 2022. "Tetra-Fish-Inspired aesthetic thermochromic windows toward Energy-Saving buildings," Applied Energy, Elsevier, vol. 315(C).
    7. Fei, Yue & Xu, Bin & Chen, Xing-ni & Pei, Gang, 2024. "Optimization of infrared emissivity design for radiative cooling windows using artificial neural networks: Considering the diversity of climate and building features," Renewable Energy, Elsevier, vol. 231(C).
    8. Mehrdad Ghamari & Senthilarasu Sundaram, 2024. "Solar Window Innovations: Enhancing Building Performance through Advanced Technologies," Energies, MDPI, vol. 17(14), pages 1-31, July.
    9. Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
    10. Lee, Minjung & Ham, Jeonggyun & Lee, Jeong-Won & Cho, Honghyun, 2023. "Analysis of thermal comfort, energy consumption, and CO2 reduction of indoor space according to the type of local heating under winter rest conditions," Energy, Elsevier, vol. 268(C).
    11. Chen, Xing-ni & Xu, Bin & Fei, Yue & Pei, Gang, 2024. "Combination optimization, importance order of parameters and aging consequence prediction for thermal insulation coating with radiation characteristics," Energy, Elsevier, vol. 290(C).
    12. Tao, Yao & Yan, Yihuan & Chew, Michael Yit Lin & Tu, Jiyuan & Shi, Long, 2023. "A theoretical model of natural ventilation enhanced by solar thermal energy in double-skin façade," Energy, Elsevier, vol. 276(C).
    13. Wang, Chuyao & Yang, Hongxing & Ji, Jie, 2024. "Performance analysis of a PV/T shading device for enhancing energy saving and human comfort," Applied Energy, Elsevier, vol. 376(PA).
    14. Borys Basok & Anatoliy Pavlenko & Volodymyr Novikov & Hanna Koshlak & Anita Ciosek & Maryna Moroz, 2024. "Comprehensive Investigation of the Thermal Performance of an Electrically Heated Double-Glazed Window: A Theoretical and Experimental Approach," Energies, MDPI, vol. 17(17), pages 1-18, September.
    15. Sun, Yanyi & Liu, Xin & Ming, Yang & Liu, Xiao & Mahon, Daniel & Wilson, Robin & Liu, Hao & Eames, Philip & Wu, Yupeng, 2021. "Energy and daylight performance of a smart window: Window integrated with thermotropic parallel slat-transparent insulation material," Applied Energy, Elsevier, vol. 293(C).
    16. Zhang, Chengyan & Ji, Jie & Ke, Wei & Tang, Yayun, 2024. "Comprehensive performance investigation of a novel thermal catalytic semi-transparent PV double-skin ventilated window integrated with CdTe cells," Energy, Elsevier, vol. 300(C).
    17. Sai Liu & Yang Li & Ying Wang & Yuwei Du & Kin Man Yu & Hin-Lap Yip & Alex K. Y. Jen & Baoling Huang & Chi Yan Tso, 2024. "Mask-inspired moisture-transmitting and durable thermochromic perovskite smart windows," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Jerzy Szyszka, 2022. "From Direct Solar Gain to Trombe Wall: An Overview on Past, Present and Future Developments," Energies, MDPI, vol. 15(23), pages 1-25, November.
    19. Kuan-Ting Yeh & Wei-Chieh Hu & Chun-Kuei Chen & Ta-Hui Lin & Feng-Yi Lin & Chung-Chih Cheng & Tzu-Ching Su & Pei-Yu Yu, 2025. "The Influence of Electrochromic Film on Indoor Environmental Quality," Energies, MDPI, vol. 18(10), pages 1-17, May.
    20. Wang, Yiting & Hu, Xuan & Gu, Tao & Ji, Jie & Li, Niansi & Yu, Bendong, 2024. "The design, experimental and numerical study on a novel double-skin glass ventilation wall with PV blind integrated with thermal catalytic materials for synergistic energy generation and air purificat," Energy, Elsevier, vol. 313(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225008771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.