IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v285y2023ics0360544223028311.html
   My bibliography  Save this article

Dynamic aerogel window with switchable solar transmittance and low haze

Author

Listed:
  • Pu, Jin Huan
  • Yu, Xiyu
  • Zhao, Yuewen
  • Tang, G.H.
  • Ren, Xingjie
  • Du, Mu

Abstract

Transparent aerogel window based on silica aerogel has been investigated for achieving energy-saving buildings. However, most of the attention was paid to the effective thermal conductivity and solar transmittance of the aerogel. The research on solar transmittance control and visual experience is still lacking. In the present study, a dynamic aerogel based on V O2/SiO2 core–shell nanospheres is proposed to serve as an energy-saving window. The effects of particle size, outer-to-inner diameter ratio, volume fraction, and thickness on the radiative properties of aerogel windows are studied theoretically by combining the Mie theory and the Monte Carlo method. In particular, the solar control ability and haze of the dynamic aerogel are computed. The results show that a 0.25 cm thick aerogel doped with core–shell nanospheres of D/d= 2 (fv= 0.01%) achieves solar control ability of 124.2 W/m2. The solar transmittance and haze are 70% (55%) and 0.067 (0.097) for the insulating (metallic) phase. The present study provides a guideline for designing highly transparent aerogel windows with switchable solar transmittance and low haze for energy-saving buildings.

Suggested Citation

  • Pu, Jin Huan & Yu, Xiyu & Zhao, Yuewen & Tang, G.H. & Ren, Xingjie & Du, Mu, 2023. "Dynamic aerogel window with switchable solar transmittance and low haze," Energy, Elsevier, vol. 285(C).
  • Handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223028311
    DOI: 10.1016/j.energy.2023.129437
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223028311
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129437?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shaik, Saboor & Maduru, Venkata Ramana & Kontoleon, Karolos J. & Arıcı, Müslüm & Gorantla, Kirankumar & Afzal, Asif, 2022. "Building glass retrofitting strategies in hot and dry climates: Cost savings on cooling, diurnal lighting, color rendering, and payback timeframes," Energy, Elsevier, vol. 243(C).
    2. Zhao, Xinpeng & Mofid, Sohrab Alex & Jelle, Bjørn Petter & Tan, Gang & Yin, Xiaobo & Yang, Ronggui, 2020. "Optically-switchable thermally-insulating VO2-aerogel hybrid film for window retrofits," Applied Energy, Elsevier, vol. 278(C).
    3. Yu, Xiyu & Huang, Maoquan & Wang, Xinyu & Sun, Qie & Tang, G.H. & Du, Mu, 2022. "Toward optical selectivity aerogels by plasmonic nanoparticles doping," Renewable Energy, Elsevier, vol. 190(C), pages 741-751.
    4. Buratti, C. & Moretti, E., 2012. "Glazing systems with silica aerogel for energy savings in buildings," Applied Energy, Elsevier, vol. 98(C), pages 396-403.
    5. Chen, Meijie & He, Yurong & Zhu, Jiaqi & Wen, Dongsheng, 2016. "Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors," Applied Energy, Elsevier, vol. 181(C), pages 65-74.
    6. Khalid, Maria & Shanks, Katie & Ghosh, Aritra & Tahir, Asif & Sundaram, Senthilarasu & Mallick, Tapas Kumar, 2021. "Temperature regulation of concentrating photovoltaic window using argon gas and polymer dispersed liquid crystal films," Renewable Energy, Elsevier, vol. 164(C), pages 96-108.
    7. Nundy, Srijita & Ghosh, Aritra, 2020. "Thermal and visual comfort analysis of adaptive vacuum integrated switchable suspended particle device window for temperate climate," Renewable Energy, Elsevier, vol. 156(C), pages 1361-1372.
    8. Krarti, Moncef, 2023. "Optimal energy performance of dynamic sliding and insulated shades for residential buildings," Energy, Elsevier, vol. 263(PB).
    9. Chi, Fang'ai & Xu, Ying & Wang, Xueru, 2022. "Transparent part design optimizations in buildings towards energy saving based on customized radiation sky dome model," Energy, Elsevier, vol. 253(C).
    10. Zhang, Shu & Ma, Yuxin & Li, Dong & Liu, Changyu & Yang, Ruitong, 2022. "Thermal performance of a reversible multiple-glazing roof filled with two PCM," Renewable Energy, Elsevier, vol. 182(C), pages 1080-1093.
    11. Xamán, J. & Olazo-Gómez, Y. & Chávez, Y. & Hinojosa, J.F. & Hernández-Pérez, I. & Hernández-López, I. & Zavala-Guillén, I., 2016. "Computational fluid dynamics for thermal evaluation of a room with a double glazing window with a solar control film," Renewable Energy, Elsevier, vol. 94(C), pages 237-250.
    12. Xiao Han & Chu Wei, 2021. "Household energy consumption: state of the art, research gaps, and future prospects," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12479-12504, August.
    13. Ghosh, Aritra & Norton, Brian, 2018. "Advances in switchable and highly insulating autonomous (self-powered) glazing systems for adaptive low energy buildings," Renewable Energy, Elsevier, vol. 126(C), pages 1003-1031.
    14. Mesloub, Abdelhakim & Ghosh, Aritra & Touahmia, Mabrouk & Albaqawy, Ghazy Abdullah & Alsolami, Badr M. & Ahriz, Atef, 2022. "Assessment of the overall energy performance of an SPD smart window in a hot desert climate," Energy, Elsevier, vol. 252(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghosh, Aritra, 2023. "Investigation of vacuum-integrated switchable polymer dispersed liquid crystal glazing for smart window application for less energy-hungry building," Energy, Elsevier, vol. 265(C).
    2. Zhou, Yuekuan, 2022. "A multi-stage supervised learning optimisation approach on an aerogel glazing system with stochastic uncertainty," Energy, Elsevier, vol. 258(C).
    3. Shaik, Saboor & Maduru, Venkata Ramana & Kirankumar, Gorantla & Arıcı, Müslüm & Ghosh, Aritra & Kontoleon, Karolos J. & Afzal, Asif, 2022. "Space-age energy saving, carbon emission mitigation and color rendering perspective of architectural antique stained glass windows," Energy, Elsevier, vol. 259(C).
    4. Field, Edward & Ghosh, Aritra, 2023. "Energy assessment of advanced and switchable windows for less energy-hungry buildings in the UK," Energy, Elsevier, vol. 283(C).
    5. Shen, Yi & Xue, Peng & Luo, Tao & Zhang, Yanyun & Tso, Chi Yan & Zhang, Nan & Sun, Yuying & Xie, Jingchao & Liu, Jiaping, 2022. "Regional applicability of thermochromic windows based on dynamic radiation spectrum," Renewable Energy, Elsevier, vol. 196(C), pages 15-27.
    6. Huang, Maoquan & Tang, G.H. & Si, Qiaoling & Pu, Jin Huan & Sun, Qie & Du, Mu, 2023. "Plasmonic aerogel window with structural coloration for energy-efficient and sustainable building envelopes," Renewable Energy, Elsevier, vol. 216(C).
    7. Mesloub, Abdelhakim & Ghosh, Aritra & Touahmia, Mabrouk & Albaqawy, Ghazy Abdullah & Alsolami, Badr M. & Ahriz, Atef, 2022. "Assessment of the overall energy performance of an SPD smart window in a hot desert climate," Energy, Elsevier, vol. 252(C).
    8. Lyu, Yuanli & Liu, Wenjie & Chow, Tin-tai & Su, Hua & Qi, Xuejun, 2019. "Pipe-work optimization of water flow window," Renewable Energy, Elsevier, vol. 139(C), pages 136-146.
    9. Zhou, Yuekuan & Zheng, Siqian, 2020. "Climate adaptive optimal design of an aerogel glazing system with the integration of a heuristic teaching-learning-based algorithm in machine learning-based optimization," Renewable Energy, Elsevier, vol. 153(C), pages 375-391.
    10. Sadooghi, Parham & Kherani, Nazir P., 2019. "Influence of slat angle and low-emissive partitioning radiant energy veils on the thermal performance of multilayered windows for dynamic facades," Renewable Energy, Elsevier, vol. 143(C), pages 142-148.
    11. Bai, Yijie & He, Yurong, 2022. "Enhanced solar modulation ability of smart windows based on hydroxypropyl cellulose mixed with nonionic surfactants," Renewable Energy, Elsevier, vol. 198(C), pages 749-759.
    12. Aritra Ghosh & Abdelhakim Mesloub & Mabrouk Touahmia & Meriem Ajmi, 2021. "Visual Comfort Analysis of Semi-Transparent Perovskite Based Building Integrated Photovoltaic Window for Hot Desert Climate (Riyadh, Saudi Arabia)," Energies, MDPI, vol. 14(4), pages 1-13, February.
    13. Zhou, Yuekuan & Zheng, Siqian, 2020. "Uncertainty study on thermal and energy performances of a deterministic parameters based optimal aerogel glazing system using machine-learning method," Energy, Elsevier, vol. 193(C).
    14. Han, Shulun & Sun, Yuying & Wang, Wei & Xu, Wenjing & Wei, Wenzhe, 2023. "Optimal design method for electrochromic window split-pane configuration to enhance building energy efficiency," Renewable Energy, Elsevier, vol. 219(P1).
    15. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
    16. Mwesigye, Aggrey & Meyer, Josua P., 2017. "Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios," Applied Energy, Elsevier, vol. 193(C), pages 393-413.
    17. Michalis Michael & Fabio Favoino & Qian Jin & Alessandra Luna-Navarro & Mauro Overend, 2023. "A Systematic Review and Classification of Glazing Technologies for Building Façades," Energies, MDPI, vol. 16(14), pages 1-47, July.
    18. Wang, Chuyao & Ji, Jie & Uddin, Md Muin & Yu, Bendong & Song, Zhiying, 2021. "The study of a double-skin ventilated window integrated with CdTe cells in a rural building," Energy, Elsevier, vol. 215(PA).
    19. Lin, Yi-Feng & Ko, Chia-Chieh & Chen, Chien-Hua & Tung, Kuo-Lun & Chang, Kai-Shiun & Chung, Tsair-Wang, 2014. "Sol–gel preparation of polymethylsilsesquioxane aerogel membranes for CO2 absorption fluxes in membrane contactors," Applied Energy, Elsevier, vol. 129(C), pages 25-31.
    20. Anna Bać & Magdalena Nemś & Artur Nemś & Jacek Kasperski, 2019. "Sustainable Integration of a Solar Heating System into a Single-Family House in the Climate of Central Europe—A Case Study," Sustainability, MDPI, vol. 11(15), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223028311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.