IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v85y2016icp1068-1078.html
   My bibliography  Save this article

An experimental study on the evaluation of natural ventilation performance of a two-sided wind-catcher for various wind angles

Author

Listed:
  • Afshin, M.
  • Sohankar, A.
  • Manshadi, M. Dehghan
  • Esfeh, M. Kazemi

Abstract

Natural ventilation performance of a two-sided wind-catcher is investigated for various wind angles (α = 0°–90°) and wind speeds by experimental wind tunnel and smoke flow visualization. A 1:50 scale model of a real wind-catcher in the city of Yazd (Iran) is employed. The pressure coefficient as well as velocity are measured by pressure taps and hot-wire anemometer, respectively. The hot-wire results are used to evaluate the induced airflow rate and turbulence intensity. Smoke flow visualization techniques are employed to study the flow structure and patterns inside and outside of the wind-catcher. The results indicate that the wind direction has a large influence on the wind-catcher performance and the induced airflow rate increases with increasing the wind speed. The hot-wire results show that the transition angles of the house window and windward opening for all wind speeds occur at the wind angles of 39° and 55°, respectively. An excellent agreement is also found for these transition angles when they are determined by measured pressure coefficients. Based on measured quantities, it is found that the wind-catcher acts as a chimney for the wind angle larger than the windward transition angle (α = 55°) and the highest ventilation rate occurs at the wind angle of 90°.

Suggested Citation

  • Afshin, M. & Sohankar, A. & Manshadi, M. Dehghan & Esfeh, M. Kazemi, 2016. "An experimental study on the evaluation of natural ventilation performance of a two-sided wind-catcher for various wind angles," Renewable Energy, Elsevier, vol. 85(C), pages 1068-1078.
  • Handle: RePEc:eee:renene:v:85:y:2016:i:c:p:1068-1078
    DOI: 10.1016/j.renene.2015.07.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115301324
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.07.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bahadori, Mehdi N., 1994. "Viability of wind towers in achieving summer comfort in the hot arid regions of the middle east," Renewable Energy, Elsevier, vol. 5(5), pages 879-892.
    2. Montazeri, H. & Montazeri, F. & Azizian, R. & Mostafavi, S., 2010. "Two-sided wind catcher performance evaluation using experimental, numerical and analytical modeling," Renewable Energy, Elsevier, vol. 35(7), pages 1424-1435.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Payam Nejat & Fatemeh Jomehzadeh & Hasanen Mohammed Hussen & John Kaiser Calautit & Muhd Zaimi Abd Majid, 2018. "Application of Wind as a Renewable Energy Source for Passive Cooling through Windcatchers Integrated with Wing Walls," Energies, MDPI, vol. 11(10), pages 1-23, September.
    2. Jeongyoon Oh & Taehoon Hong & Hakpyeong Kim & Jongbaek An & Kwangbok Jeong & Choongwan Koo, 2017. "Advanced Strategies for Net-Zero Energy Building: Focused on the Early Phase and Usage Phase of a Building’s Life Cycle," Sustainability, MDPI, vol. 9(12), pages 1-52, December.
    3. Jomehzadeh, Fatemeh & Nejat, Payam & Calautit, John Kaiser & Yusof, Mohd Badruddin Mohd & Zaki, Sheikh Ahmad & Hughes, Ben Richard & Yazid, Muhammad Noor Afiq Witri Muhammad, 2017. "A review on windcatcher for passive cooling and natural ventilation in buildings, Part 1: Indoor air quality and thermal comfort assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 736-756.
    4. Calautit, John Kaiser & Hughes, Ben Richard & O’Connor, Dominic & Shahzad, Sally Salome, 2017. "Numerical and experimental analysis of a multi-directional wind tower integrated with vertically-arranged heat transfer devices (VHTD)," Applied Energy, Elsevier, vol. 185(P2), pages 1120-1135.
    5. Calautit, John Kaiser & O’Connor, Dominic & Tien, Paige Wenbin & Wei, Shuangyu & Pantua, Conrad Allan Jay & Hughes, Ben, 2020. "Development of a natural ventilation windcatcher with passive heat recovery wheel for mild-cold climates: CFD and experimental analysis," Renewable Energy, Elsevier, vol. 160(C), pages 465-482.
    6. Cuce, Erdem & Harjunowibowo, Dewanto & Cuce, Pinar Mert, 2016. "Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 34-59.
    7. Mady A. A. Mohamed & Mohamed F. El-Amin, 2022. "Inward and Outward Opening Properties of One-Sided Windcatchers: Experimental and Analytical Evaluation," Sustainability, MDPI, vol. 14(7), pages 1-21, March.
    8. Ahmed, Tariq & Kumar, Prashant & Mottet, Laetitia, 2021. "Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience and indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezaeian, M. & Montazeri, H. & Loonen, R.C.G.M., 2017. "Science foresight using life-cycle analysis, text mining and clustering: A case study on natural ventilation," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 270-280.
    2. Saadatian, Omidreza & Haw, Lim Chin & Sopian, K. & Sulaiman, M.Y., 2012. "Review of windcatcher technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1477-1495.
    3. Hughes, Ben Richard & Calautit, John Kaiser & Ghani, Saud Abdul, 2012. "The development of commercial wind towers for natural ventilation: A review," Applied Energy, Elsevier, vol. 92(C), pages 606-627.
    4. Montazeri, H. & Montazeri, F., 2018. "CFD simulation of cross-ventilation in buildings using rooftop wind-catchers: Impact of outlet openings," Renewable Energy, Elsevier, vol. 118(C), pages 502-520.
    5. Alsailani, M. & Montazeri, H. & Rezaeiha, A., 2021. "Towards optimal aerodynamic design of wind catchers: Impact of geometrical characteristics," Renewable Energy, Elsevier, vol. 168(C), pages 1344-1363.
    6. Bahadori, M.N. & Mazidi, M. & Dehghani, A.R., 2008. "Experimental investigation of new designs of wind towers," Renewable Energy, Elsevier, vol. 33(10), pages 2273-2281.
    7. Alexey Maslakov & Ksenia Sotnikova & Gleb Gribovskii & Dmitry Evlanov, 2022. "Thermal Simulation of Ice Cellars as a Basis for Food Security and Energy Sustainability of Isolated Indigenous Communities in the Arctic," Energies, MDPI, vol. 15(3), pages 1-16, January.
    8. Payam Nejat & Fatemeh Jomehzadeh & Hasanen Mohammed Hussen & John Kaiser Calautit & Muhd Zaimi Abd Majid, 2018. "Application of Wind as a Renewable Energy Source for Passive Cooling through Windcatchers Integrated with Wing Walls," Energies, MDPI, vol. 11(10), pages 1-23, September.
    9. Jinsoo Park & Jung-Il Choi & Gwang Hoon Rhee, 2016. "Enhanced Single-Sided Ventilation with Overhang in Buildings," Energies, MDPI, vol. 9(3), pages 1-14, February.
    10. Jomehzadeh, Fatemeh & Nejat, Payam & Calautit, John Kaiser & Yusof, Mohd Badruddin Mohd & Zaki, Sheikh Ahmad & Hughes, Ben Richard & Yazid, Muhammad Noor Afiq Witri Muhammad, 2017. "A review on windcatcher for passive cooling and natural ventilation in buildings, Part 1: Indoor air quality and thermal comfort assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 736-756.
    11. Abolfazl Heidari & Sadra Sahebzadeh & Zahra Dalvand, 2017. "Natural Ventilation in Vernacular Architecture of Sistan, Iran; Classification and CFD Study of Compound Rooms," Sustainability, MDPI, vol. 9(6), pages 1-19, June.
    12. Kalantar, Vali, 2009. "Numerical simulation of cooling performance of wind tower (Baud-Geer) in hot and arid region," Renewable Energy, Elsevier, vol. 34(1), pages 246-254.
    13. Monghasemi, Nima & Vadiee, Amir, 2018. "A review of solar chimney integrated systems for space heating and cooling application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2714-2730.
    14. Madjid Soltani & Alireza Dehghani-Sanij & Ahmad Sayadnia & Farshad M. Kashkooli & Kobra Gharali & SeyedBijan Mahbaz & Maurice B. Dusseault, 2018. "Investigation of Airflow Patterns in a New Design of Wind Tower with a Wetted Surface," Energies, MDPI, vol. 11(5), pages 1-23, April.
    15. Azam Noroozi & Yannis S. Veneris, 2018. "Thermal Assessment of a Novel Combine Evaporative Cooling Wind Catcher," Energies, MDPI, vol. 11(2), pages 1-15, February.
    16. Soni, Suresh Kumar & Pandey, Mukesh & Bartaria, Vishvendra Nath, 2016. "Hybrid ground coupled heat exchanger systems for space heating/cooling applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 724-738.
    17. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2018. "Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades," Energy, Elsevier, vol. 165(PB), pages 1129-1148.
    18. Sajad M.R. Khani & Mehdi N. Bahadori & Alireza Dehghani-Sanij & Ahmad Nourbakhsh, 2017. "Performance Evaluation of a Modular Design of Wind Tower with Wetted Surfaces," Energies, MDPI, vol. 10(7), pages 1-20, June.
    19. Afaq Hyder Chohan & Jihad Awad, 2022. "Wind Catchers: An Element of Passive Ventilation in Hot, Arid and Humid Regions, a Comparative Analysis of Their Design and Function," Sustainability, MDPI, vol. 14(17), pages 1-23, September.
    20. Ashraf Balabel & Mamdooh Alwetaishi & Wageeh A. El-Askary & Hamza Fawzy, 2021. "Numerical Study on Natural Ventilation Characteristics of a Partial-Cylinder Opening for One-Sided-Windcatcher of Variable Air-Feeding Orientations in Taif, Saudi Arabia," Sustainability, MDPI, vol. 13(20), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:85:y:2016:i:c:p:1068-1078. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.