IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v119y2020ics136403211930749x.html
   My bibliography  Save this article

Future integrated mobility-energy systems: A modeling perspective

Author

Listed:
  • Muratori, Matteo
  • Jadun, Paige
  • Bush, Brian
  • Bielen, David
  • Vimmerstedt, Laura
  • Gonder, Jeff
  • Gearhart, Chris
  • Arent, Doug

Abstract

After over a century of petroleum dominance, the transportation sector is on the verge of radical transformations driven by rapid technology advancement of alternative fuels, automation, information technologies that create new mobility options and business models, and policies at all levels of government. While the technologies and fuels that will move people and goods in the future remain uncertain, the future transportation system will be more integrated with smart buildings, the electric grid, renewables, and information ecosystems, allowing for great opportunities to exploit these interconnections. Modeling tools for analyzing integrated mobility-energy systems require a deep understanding of these interconnections, of the infrastructure required to support alternative fuel vehicles, and a more nuanced understanding of transportation energy needs across multiple segments and spatiotemporal scales. In this paper, we assess the landscape of existing tools used to represent and model future mobility systems and their interactions with other energy systems. We conclude that (a) out-of-sample extrapolation of emerging trends and future anticipated developments is more important than ever due to the plethora of factors driving disruptive change in mobility systems; (b) understanding adoption opportunities for alternative fuel light-duty vehicles requires modeling intra-household decisions affecting travel demand and mode choice; (c) mobility and energy systems need to be modeled as an integrated continuum, breaking the traditional approach in which dynamic energy supply models use relatively simple transportation demand and vice-versa; and (d) increased spatiotemporal fidelity and scalability are required to dynamically couple transportation/mobility and energy supply models and capitalize on these unprecedented interconnection opportunities.

Suggested Citation

  • Muratori, Matteo & Jadun, Paige & Bush, Brian & Bielen, David & Vimmerstedt, Laura & Gonder, Jeff & Gearhart, Chris & Arent, Doug, 2020. "Future integrated mobility-energy systems: A modeling perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
  • Handle: RePEc:eee:rensus:v:119:y:2020:i:c:s136403211930749x
    DOI: 10.1016/j.rser.2019.109541
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211930749X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109541?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ni, Jason & Johnson, Nils & Ogden, Joan M & Yang, Christopher & Johnson, Joshua, 2005. "Estimating Hydrogen Demand Distribution Using Geographic Information Systems (GIS)," Institute of Transportation Studies, Working Paper Series qt9b8424mf, Institute of Transportation Studies, UC Davis.
    2. Tattini, Jacopo & Ramea, Kalai & Gargiulo, Maurizio & Yang, Christopher & Mulholland, Eamonn & Yeh, Sonia & Karlsson, Kenneth, 2018. "Improving the representation of modal choice into bottom-up optimization energy system models – The MoCho-TIMES model," Applied Energy, Elsevier, vol. 212(C), pages 265-282.
    3. Tittmann, P.W. & Parker, N.C. & Hart, Q.J. & Jenkins, B.M., 2010. "A spatially explicit techno-economic model of bioenergy and biofuels production in California," Journal of Transport Geography, Elsevier, vol. 18(6), pages 715-728.
    4. Ramea, Kalai & Bunch, David S. & Yang, Christopher & Yeh, Sonia & Ogden, Joan M., 2018. "Integration of behavioral effects from vehicle choice models into long-term energy systems optimization models," Energy Economics, Elsevier, vol. 74(C), pages 663-676.
    5. Fulton, Lew & Cazzola, Pierpaolo & Cuenot, François, 2009. "IEA Mobility Model (MoMo) and its use in the ETP 2008," Energy Policy, Elsevier, vol. 37(10), pages 3758-3768, October.
    6. Ejis, 2018. "Table of Contents," European Journal of Interdisciplinary Studies, Bucharest Economic Academy, issue 02, June.
    7. Barter, Garrett E. & Reichmuth, David & Westbrook, Jessica & Malczynski, Leonard A. & West, Todd H. & Manley, Dawn K. & Guzman, Katherine D. & Edwards, Donna M., 2012. "Parametric analysis of technology and policy tradeoffs for conventional and electric light-duty vehicles," Energy Policy, Elsevier, vol. 46(C), pages 473-488.
    8. Horne, Matt & Jaccard, Mark & Tiedemann, Ken, 2005. "Improving behavioral realism in hybrid energy-economy models using discrete choice studies of personal transportation decisions," Energy Economics, Elsevier, vol. 27(1), pages 59-77, January.
    9. Kimon Keramidas & Alban Kitous & Jacques Despres & Andreas Schmitz & Ana Diaz Vazquez & Silvana Mima & Peter Russ & Tobias Wiesenthal, 2017. "POLES-JRC model documentation," JRC Research Reports JRC107387, Joint Research Centre.
    10. Matteo Muratori & Brian Bush & Chad Hunter & Marc W. Melaina, 2018. "Modeling Hydrogen Refueling Infrastructure to Support Passenger Vehicles †," Energies, MDPI, vol. 11(5), pages 1-14, May.
    11. Pye, Steve & Daly, Hannah, 2015. "Modelling sustainable urban travel in a whole systems energy model," Applied Energy, Elsevier, vol. 159(C), pages 97-107.
    12. Henri-David Waisman & Celine Guivarch & Franck Lecocq, 2013. "The transportation sector and low-carbon growth pathways: modelling urban, infrastructure, and spatial determinants of mobility," Climate Policy, Taylor & Francis Journals, vol. 13(sup01), pages 106-129, March.
    13. Ejis, 2018. "Table of Contents," European Journal of Interdisciplinary Studies, Bucharest Economic Academy, issue 01, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Wei & Tan, Zhongfu & Li, Fanqi & Zhang, Amin & Ju, Liwei & Wang, Yuwei & De, Gejirifu, 2023. "A two-stage optimal scheduling model of integrated energy system based on CVaR theory implementing integrated demand response," Energy, Elsevier, vol. 263(PC).
    2. Powell, Siobhan & Cezar, Gustavo Vianna & Rajagopal, Ram, 2022. "Scalable probabilistic estimates of electric vehicle charging given observed driver behavior," Applied Energy, Elsevier, vol. 309(C).
    3. Siobhan Powell & Gustavo Vianna Cezar & Liang Min & Inês M. L. Azevedo & Ram Rajagopal, 2022. "Charging infrastructure access and operation to reduce the grid impacts of deep electric vehicle adoption," Nature Energy, Nature, vol. 7(10), pages 932-945, October.
    4. Blanco, Herib & Leaver, Jonathan & Dodds, Paul E. & Dickinson, Robert & García-Gusano, Diego & Iribarren, Diego & Lind, Arne & Wang, Changlong & Danebergs, Janis & Baumann, Martin, 2022. "A taxonomy of models for investigating hydrogen energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Zhou, Yuekuan, 2023. "Sustainable energy sharing districts with electrochemical battery degradation in design, planning, operation and multi-objective optimisation," Renewable Energy, Elsevier, vol. 202(C), pages 1324-1341.
    6. Florian Leblanc & Ruben Bibas & Silvana Mima & Matteo Muratori & Shogo Sakamoto & Fuminori Sano & Nico Bauer & Vassilis Daioglou & Shinichiro Fujimori & Matthew J. Gidden & Estsushi Kato & Steven K. R, 2022. "The contribution of bioenergy to the decarbonization of transport: a multi-model assessment," Climatic Change, Springer, vol. 170(3), pages 1-21, February.
    7. Pan, Shuai & Fulton, Lewis M. & Roy, Anirban & Jung, Jia & Choi, Yunsoo & Gao, H. Oliver, 2021. "Shared use of electric autonomous vehicles: Air quality and health impacts of future mobility in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    8. Cai, Yongxia & Woollacott, Jared & Beach, Robert H. & Rafelski, Lauren E. & Ramig, Christopher & Shelby, Michael, 2023. "Insights from adding transportation sector detail into an economy-wide model: The case of the ADAGE CGE model," Energy Economics, Elsevier, vol. 123(C).
    9. Bazzana, Davide & Cohen, Jed J. & Golinucci, Nicolò & Hafner, Manfred & Noussan, Michel & Reichl, Johannes & Rocco, Matteo Vincenzo & Sciullo, Alessandro & Vergalli, Sergio, 2022. "A multi-disciplinary approach to estimate the medium-term impact of COVID-19 on transport and energy: A case study for Italy," Energy, Elsevier, vol. 238(PC).
    10. Oleksandr Melnychenko, 2021. "Energy Losses Due to Imperfect Payment Infrastructure and Payment Instruments," Energies, MDPI, vol. 14(24), pages 1-20, December.
    11. Christopher Hoehne & Matteo Muratori & Paige Jadun & Brian Bush & Arthur Yip & Catherine Ledna & Laura Vimmerstedt & Kara Podkaminer & Ookie Ma, 2023. "Exploring decarbonization pathways for USA passenger and freight mobility," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salvucci, Raffaele & Tattini, Jacopo & Gargiulo, Maurizio & Lehtilä, Antti & Karlsson, Kenneth, 2018. "Modelling transport modal shift in TIMES models through elasticities of substitution," Applied Energy, Elsevier, vol. 232(C), pages 740-751.
    2. Pye, Steve & Daly, Hannah, 2015. "Modelling sustainable urban travel in a whole systems energy model," Applied Energy, Elsevier, vol. 159(C), pages 97-107.
    3. Zhang, Runsen & Fujimori, Shinichiro & Dai, Hancheng & Hanaoka, Tatsuya, 2018. "Contribution of the transport sector to climate change mitigation: Insights from a global passenger transport model coupled with a computable general equilibrium model," Applied Energy, Elsevier, vol. 211(C), pages 76-88.
    4. Tattini, Jacopo & Gargiulo, Maurizio & Karlsson, Kenneth, 2018. "Reaching carbon neutral transport sector in Denmark – Evidence from the incorporation of modal shift into the TIMES energy system modeling framework," Energy Policy, Elsevier, vol. 113(C), pages 571-583.
    5. Raffaele Salvucci & Stefan Petrović & Kenneth Karlsson & Markus Wråke & Tanu Priya Uteng & Olexandr Balyk, 2019. "Energy Scenario Analysis for the Nordic Transport Sector: A Critical Review," Energies, MDPI, vol. 12(12), pages 1-19, June.
    6. Daly, Hannah E. & Ramea, Kalai & Chiodi, Alessandro & Yeh, Sonia & Gargiulo, Maurizio & Gallachóir, Brian Ó, 2014. "Incorporating travel behaviour and travel time into TIMES energy system models," Applied Energy, Elsevier, vol. 135(C), pages 429-439.
    7. Tattini, Jacopo & Ramea, Kalai & Gargiulo, Maurizio & Yang, Christopher & Mulholland, Eamonn & Yeh, Sonia & Karlsson, Kenneth, 2018. "Improving the representation of modal choice into bottom-up optimization energy system models – The MoCho-TIMES model," Applied Energy, Elsevier, vol. 212(C), pages 265-282.
    8. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    9. David E. Allen & Michael McAleer, 2019. "Fake News and Propaganda: Trump’s Democratic America and Hitler’s National Socialist (Nazi) Germany," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
    10. Michelle Giles & Laura Graham & Jean Ball & Jennie King & Wendy Watts & Alison Harris & Christopher Oldmeadow & Rod Ling & Michelle Paul & Anthony O’Brien & Vicki Parker & John Wiggers & Maralyn Foure, 2020. "Implementation of a multifaceted nurse‐led intervention to reduce indwelling urinary catheter use in four Australian hospitals: A pre‐ and postintervention study," Journal of Clinical Nursing, John Wiley & Sons, vol. 29(5-6), pages 872-886, March.
    11. Marcella Alsan & Sarah Eichmeyer, 2024. "Experimental Evidence on the Effectiveness of Nonexperts for Improving Vaccine Demand," American Economic Journal: Economic Policy, American Economic Association, vol. 16(1), pages 394-414, February.
    12. Grytten, Jostein & Skau, Irene & Sørensen, Rune, 2020. "Who dies early? Education, mortality and causes of death in Norway," Social Science & Medicine, Elsevier, vol. 245(C).
    13. Dimitrios VALSAMIDIS & Dimosthenis PAPPAS & Vasilios FERELIS & Michael NIKOLAIDIS, 2018. "Best Strategies For The Ideal Business Model," Scientific Bulletin - Economic Sciences, University of Pitesti, vol. 17(1), pages 24-38.
    14. Brand, Christian & Anable, Jillian & Tran, Martino, 2013. "Accelerating the transformation to a low carbon passenger transport system: The role of car purchase taxes, feebates, road taxes and scrappage incentives in the UK," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 132-148.
    15. Charlotte Senkpiel & Audrey Dobbins & Christina Kockel & Jan Steinbach & Ulrich Fahl & Farina Wille & Joachim Globisch & Sandra Wassermann & Bert Droste-Franke & Wolfgang Hauser & Claudia Hofer & Lars, 2020. "Integrating Methods and Empirical Findings from Social and Behavioural Sciences into Energy System Models—Motivation and Possible Approaches," Energies, MDPI, vol. 13(18), pages 1-30, September.
    16. Guido Ala & Gabriella Di Filippo & Fabio Viola & Graziella Giglia & Antonino Imburgia & Pietro Romano & Vincenzo Castiglia & Filippo Pellitteri & Giuseppe Schettino & Rosario Miceli, 2020. "Different Scenarios of Electric Mobility: Current Situation and Possible Future Developments of Fuel Cell Vehicles in Italy," Sustainability, MDPI, vol. 12(2), pages 1-22, January.
    17. Karlsson, Ida & Rootzén, Johan & Johnsson, Filip, 2020. "Reaching net-zero carbon emissions in construction supply chains – Analysis of a Swedish road construction project," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    18. Nareen O. M. Salim & Adnan Mohsin Abdulazeez, 2021. "Human Diseases Detection Based On Machine Learning Algorithms: A Review," International Journal of Science and Business, IJSAB International, vol. 5(2), pages 102-113.
    19. Salvucci, Raffaele & Gargiulo, Maurizio & Karlsson, Kenneth, 2019. "The role of modal shift in decarbonising the Scandinavian transport sector: Applying substitution elasticities in TIMES-Nordic," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Nikolaj Kaae Kirk & Clara Navarrete & Jakob Ellegaard Juhl & José Luis Martínez & Alessandra Procentese, 2021. "The “Zero Miles Product” Concept Applied to Biofuel Production: A Case Study," Energies, MDPI, vol. 14(3), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:119:y:2020:i:c:s136403211930749x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.