IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v46y2012icp473-488.html
   My bibliography  Save this article

Parametric analysis of technology and policy tradeoffs for conventional and electric light-duty vehicles

Author

Listed:
  • Barter, Garrett E.
  • Reichmuth, David
  • Westbrook, Jessica
  • Malczynski, Leonard A.
  • West, Todd H.
  • Manley, Dawn K.
  • Guzman, Katherine D.
  • Edwards, Donna M.

Abstract

A parametric analysis is used to examine the supply demand interactions between the US light-duty vehicle (LDV) fleet, its fuels, and the corresponding primary energy sources through 2050. The analysis emphasizes competition between conventional internal combustion engine (ICE) vehicles, including hybrids, and electric vehicles (EVs), represented by both plug-in hybrid and battery electric vehicles. We find that EV market penetration could double relative to our baseline case with policies to extend consumers' effective payback period to 7 years. EVs can also reduce per vehicle petroleum consumption by up to 5% with opportunities to increase that fraction at higher adoption rates. However, EVs have limited ability to reduce LDV greenhouse gas (GHG) emissions with the current energy source mix. Alone, EVs cannot drive compliance with the most aggressive GHG emission reduction targets, even if the electricity grid shifts towards natural gas powered sources. Since ICEs will dominate the LDV fleet for up to 40 years, conventional vehicle efficiency improvements have the greatest potential for reductions in LDV GHG emissions and petroleum consumption over this time. Specifically, achieving fleet average efficiencies of 72mpg or greater can reduce average GHG emissions by 70% and average petroleum consumption by 81%.

Suggested Citation

  • Barter, Garrett E. & Reichmuth, David & Westbrook, Jessica & Malczynski, Leonard A. & West, Todd H. & Manley, Dawn K. & Guzman, Katherine D. & Edwards, Donna M., 2012. "Parametric analysis of technology and policy tradeoffs for conventional and electric light-duty vehicles," Energy Policy, Elsevier, vol. 46(C), pages 473-488.
  • Handle: RePEc:eee:enepol:v:46:y:2012:i:c:p:473-488
    DOI: 10.1016/j.enpol.2012.04.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512003138
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.04.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeroen Struben & John D Sterman, 2008. "Transition Challenges for Alternative Fuel Vehicle and Transportation Systems," Environment and Planning B, , vol. 35(6), pages 1070-1097, December.
    2. Calfee, John E., 1985. "Estimating the demand for electric automobiles using fully disaggregated probabilistic choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 19(4), pages 287-301, August.
    3. Axsen, Jonn & Burke, Andy & Kurani, Kenneth S, 2010. "Are Batteries Ready for Plug-in Hybrid Buyers?," Institute of Transportation Studies, Working Paper Series qt7vh184rw, Institute of Transportation Studies, UC Davis.
    4. Yeh, Sonia, 2007. "An empirical analysis on the adoption of alternative fuel vehicles: The case of natural gas vehicles," Energy Policy, Elsevier, vol. 35(11), pages 5865-5875, November.
    5. Greene, David L. & Patterson, Philip D. & Singh, Margaret & Li, Jia, 2005. "Feebates, rebates and gas-guzzler taxes: a study of incentives for increased fuel economy," Energy Policy, Elsevier, vol. 33(6), pages 757-775, April.
    6. Greene, David L. & Patterson, Philip D. & Singh, Margaret & Li, Jia, 2005. "Corrigendum to "Feebates, rebates and gas-guzzler taxes: a study of incentives for increased fuel economy" [Energy Policy 33 (2005) 757-775]," Energy Policy, Elsevier, vol. 33(14), pages 1901-1902, September.
    7. Axsen, Jonn & Kurani, Kenneth S, 2010. "Anticipating plug-in hybrid vehicle energy impacts in California: Constructing consumer-informed recharge profiles," Institute of Transportation Studies, Working Paper Series qt3h69n0cs, Institute of Transportation Studies, UC Davis.
    8. Eppstein, Margaret J. & Grover, David K. & Marshall, Jeffrey S. & Rizzo, Donna M., 2011. "An agent-based model to study market penetration of plug-in hybrid electric vehicles," Energy Policy, Elsevier, vol. 39(6), pages 3789-3802, June.
    9. Jeroen Struben & John D. Sterman, 2008. "Transition Challenges for Alternative Fuel Vehicle and Transportation Systems," Post-Print hal-02312277, HAL.
    10. Axsen, Jonn & Kurani, Kenneth S. & Burke, Andrew, 2010. "Are batteries ready for plug-in hybrid buyers?," Transport Policy, Elsevier, vol. 17(3), pages 173-182, May.
    11. Greene, David L., 2011. "Uncertainty, loss aversion, and markets for energy efficiency," Energy Economics, Elsevier, vol. 33(4), pages 608-616, July.
    12. Train, Kenneth, 1985. "Discount rates in consumers' energy-related decisions: A review of the literature," Energy, Elsevier, vol. 10(12), pages 1243-1253.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peterson, Meghan B. & Barter, Garrett E. & West, Todd H. & Manley, Dawn K., 2014. "A parametric study of light-duty natural gas vehicle competitiveness in the United States through 2050," Applied Energy, Elsevier, vol. 125(C), pages 206-217.
    2. Parisa Ahani & Amílcar Arantes & Rohollah Garmanjani & Sandra Melo, 2023. "Optimizing Vehicle Replacement in Sustainable Urban Freight Transportation Subject to Presence of Regulatory Measures," Sustainability, MDPI, vol. 15(16), pages 1-18, August.
    3. Westbrook, Jessica & Barter, Garrett E. & Manley, Dawn K. & West, Todd H., 2014. "A parametric analysis of future ethanol use in the light-duty transportation sector: Can the US meet its Renewable Fuel Standard goals without an enforcement mechanism?," Energy Policy, Elsevier, vol. 65(C), pages 419-431.
    4. DeCicco, John M., 2013. "Factoring the car-climate challenge: Insights and implications," Energy Policy, Elsevier, vol. 59(C), pages 382-392.
    5. Muratori, Matteo & Jadun, Paige & Bush, Brian & Bielen, David & Vimmerstedt, Laura & Gonder, Jeff & Gearhart, Chris & Arent, Doug, 2020. "Future integrated mobility-energy systems: A modeling perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    6. Chen, Yuche & Meier, Alan, 2016. "Fuel consumption impacts of auto roof racks," Energy Policy, Elsevier, vol. 92(C), pages 325-333.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petschnig, Martin & Heidenreich, Sven & Spieth, Patrick, 2014. "Innovative alternatives take action – Investigating determinants of alternative fuel vehicle adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 68-83.
    2. Axsen, Jonn, 2010. "Interpersonal Influence within Car Buyers’ Social Networks: Observing Consumer Assessment of Plug-in Hybrid Electric Vehicles (PHEVs) and the Spread of Pro-Societal Values," Institute of Transportation Studies, Working Paper Series qt8p32d18k, Institute of Transportation Studies, UC Davis.
    3. Peterson, Meghan B. & Barter, Garrett E. & West, Todd H. & Manley, Dawn K., 2014. "A parametric study of light-duty natural gas vehicle competitiveness in the United States through 2050," Applied Energy, Elsevier, vol. 125(C), pages 206-217.
    4. Sierzchula, William & Bakker, Sjoerd & Maat, Kees & van Wee, Bert, 2014. "The influence of financial incentives and other socio-economic factors on electric vehicle adoption," Energy Policy, Elsevier, vol. 68(C), pages 183-194.
    5. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    6. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    7. Lee, Yongseung & Kim, Chongman & Shin, Juneseuk, 2016. "A hybrid electric vehicle market penetration model to identify the best policy mix: A consumer ownership cycle approach," Applied Energy, Elsevier, vol. 184(C), pages 438-449.
    8. Wiedmann, Klaus-Peter & Hennigs, Nadine & Pankalla, Lars & Kassubek, Martin & Seegebarth, Barbara, 2011. "Adoption barriers and resistance to sustainable solutions in the automotive sector," Journal of Business Research, Elsevier, vol. 64(11), pages 1201-1206.
    9. Axsen, John & Kurani, Kenneth S. & McCarthy, Ryan & Yang, Christopher, 2010. "Plug-in Hybrid Vehicle GHG Impacts in California: Integrating Consumer-Informed Recharge Profiles with an Electricity-Dispatch Model," Institute of Transportation Studies, Working Paper Series qt9zg6g60t, Institute of Transportation Studies, UC Davis.
    10. Axsen, Jonn & Kurani, Kenneth S., 2013. "Hybrid, plug-in hybrid, or electric—What do car buyers want?," Energy Policy, Elsevier, vol. 61(C), pages 532-543.
    11. Green, Erin H. & Skerlos, Steven J. & Winebrake, James J., 2014. "Increasing electric vehicle policy efficiency and effectiveness by reducing mainstream market bias," Energy Policy, Elsevier, vol. 65(C), pages 562-566.
    12. Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Resource and Energy Economics, Elsevier, vol. 31(3), pages 221-238, August.
    13. Anders F. Jensen & Elisabetta Cherchi & Stefan L. Mabit & Juan de Dios Ortúzar, 2017. "Predicting the Potential Market for Electric Vehicles," Transportation Science, INFORMS, vol. 51(2), pages 427-440, May.
    14. Axsen, Jonn & Kurani, Kenneth S. & McCarthy, Ryan & Yang, Christopher, 2011. "Plug-in hybrid vehicle GHG impacts in California: Integrating consumer-informed recharge profiles with an electricity-dispatch model," Energy Policy, Elsevier, vol. 39(3), pages 1617-1629, March.
    15. Parry, Ian W.H., 2012. "Reforming the tax system to promote environmental objectives: An application to Mauritius," Ecological Economics, Elsevier, vol. 77(C), pages 103-112.
    16. Changzheng Liu and David L. Greene, 2014. "Vehicle Manufacturer Technology Adoption and Pricing Strategies under Fuel Economy/Emissions Standards and Feebates," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    17. von Rosenstiel, Dirk Peters & Heuermann, Daniel F. & Hüsig, Stefan, 2015. "Why has the introduction of natural gas vehicles failed in Germany?—Lessons on the role of market failure in markets for alternative fuel vehicles," Energy Policy, Elsevier, vol. 78(C), pages 91-101.
    18. Shepherd, Simon & Bonsall, Peter & Harrison, Gillian, 2012. "Factors affecting future demand for electric vehicles: A model based study," Transport Policy, Elsevier, vol. 20(C), pages 62-74.
    19. Brand, Christian & Anable, Jillian & Tran, Martino, 2013. "Accelerating the transformation to a low carbon passenger transport system: The role of car purchase taxes, feebates, road taxes and scrappage incentives in the UK," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 132-148.
    20. Davies, Jamie & Kurani, Kenneth S., 2013. "Moving from assumption to observation: Implications for energy and emissions impacts of plug-in hybrid electric vehicles," Energy Policy, Elsevier, vol. 62(C), pages 550-560.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:46:y:2012:i:c:p:473-488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.