IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipcs036054422202669x.html
   My bibliography  Save this article

A two-stage optimal scheduling model of integrated energy system based on CVaR theory implementing integrated demand response

Author

Listed:
  • Fan, Wei
  • Tan, Zhongfu
  • Li, Fanqi
  • Zhang, Amin
  • Ju, Liwei
  • Wang, Yuwei
  • De, Gejirifu

Abstract

A day-ahead and real-time two-stage risk economic optimal model of integrated energy system (IES) is established. First, considering the electricity and heating coupling characteristics of combined heat and power, the feasible region is described by mathematical model, and the integrated demand response model is expanded from the traditional demand response model. Second, the objective functions and constraints of two stages are established respectively. The first stage optimal objective is to minimize the pre-scheduled operation cost of day-ahead, which arranges the output power of renewable energy and the startup-shutdown plan, output power and reserve capacity of adjustable equipment. The second stage optimal objective is to minimize the re-scheduled expected cost of real-time, which will call reserve capacity, curtail renewable energy output, implement integrated demand response, and use energy storage to cope with power deviations. In order to quantify the risk cost of multiple uncertainties of power, load, and price, the real-time stage objective function is further improved to a form of conditional value at risk. Finally, simulations implemented on a green park show that: the proposed model can achieve the optimization of energy supply at different time scales and improve scheduling enforceability after considering economics and risk. Shapely Value can fairly and reasonably determines the benefit distribution scheme of different subjects in IES.

Suggested Citation

  • Fan, Wei & Tan, Zhongfu & Li, Fanqi & Zhang, Amin & Ju, Liwei & Wang, Yuwei & De, Gejirifu, 2023. "A two-stage optimal scheduling model of integrated energy system based on CVaR theory implementing integrated demand response," Energy, Elsevier, vol. 263(PC).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pc:s036054422202669x
    DOI: 10.1016/j.energy.2022.125783
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422202669X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125783?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitriadis, Christos N. & Tsimopoulos, Evangelos G. & Georgiadis, Michael C., 2022. "Strategic bidding of an energy storage agent in a joint energy and reserve market under stochastic generation," Energy, Elsevier, vol. 242(C).
    2. Cooper, Mark, 2018. "Governing the global climate commons: The political economy of state and local action, after the U.S. flip-flop on the Paris Agreement," Energy Policy, Elsevier, vol. 118(C), pages 440-454.
    3. Wang, Yuwei & Yang, Yuanjuan & Fei, Haoran & Song, Minghao & Jia, Mengyao, 2022. "Wasserstein and multivariate linear affine based distributionally robust optimization for CCHP-P2G scheduling considering multiple uncertainties," Applied Energy, Elsevier, vol. 306(PA).
    4. Shuhui Ren & Xun Dou & Zhen Wang & Jun Wang & Xiangyan Wang, 2020. "Medium- and Long-Term Integrated Demand Response of Integrated Energy System Based on System Dynamics," Energies, MDPI, vol. 13(3), pages 1-24, February.
    5. Zhang, Ning & Sun, Qiuye & Yang, Lingxiao, 2021. "A two-stage multi-objective optimal scheduling in the integrated energy system with We-Energy modeling," Energy, Elsevier, vol. 215(PB).
    6. Morales-España, Germán & Martínez-Gordón, Rafael & Sijm, Jos, 2022. "Classifying and modelling demand response in power systems," Energy, Elsevier, vol. 242(C).
    7. Yang, Xiaohui & Chen, Zaixing & Huang, Xin & Li, Ruixin & Xu, Shaoping & Yang, Chunsheng, 2021. "Robust capacity optimization methods for integrated energy systems considering demand response and thermal comfort," Energy, Elsevier, vol. 221(C).
    8. Li, Peng & Wang, Zixuan & Wang, Jiahao & Guo, Tianyu & Yin, Yunxing, 2021. "A multi-time-space scale optimal operation strategy for a distributed integrated energy system," Applied Energy, Elsevier, vol. 289(C).
    9. Turk, Ana & Wu, Qiuwei & Zhang, Menglin & Østergaard, Jacob, 2020. "Day-ahead stochastic scheduling of integrated multi-energy system for flexibility synergy and uncertainty balancing," Energy, Elsevier, vol. 196(C).
    10. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    11. Zhu, Xu & Sun, Yuanzhang & Yang, Jun & Dou, Zhenlan & Li, Gaojunjie & Xu, Chengying & Wen, Yuxin, 2022. "Day-ahead energy pricing and management method for regional integrated energy systems considering multi-energy demand responses," Energy, Elsevier, vol. 251(C).
    12. Li, Songrui & Zhang, Lihui & Nie, Lei & Wang, Jianing, 2022. "Trading strategy and benefit optimization of load aggregators in integrated energy systems considering integrated demand response: A hierarchical Stackelberg game," Energy, Elsevier, vol. 249(C).
    13. Muratori, Matteo & Jadun, Paige & Bush, Brian & Bielen, David & Vimmerstedt, Laura & Gonder, Jeff & Gearhart, Chris & Arent, Doug, 2020. "Future integrated mobility-energy systems: A modeling perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    14. Liu, Zhiqiang & Cui, Yanping & Wang, Jiaqiang & Yue, Chang & Agbodjan, Yawovi Souley & Yang, Yu, 2022. "Multi-objective optimization of multi-energy complementary integrated energy systems considering load prediction and renewable energy production uncertainties," Energy, Elsevier, vol. 254(PC).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yongzhen & Zhang, Lanlan & Song, Yi & Han, Kai & Zhang, Yan & Zhu, Yilin & Kang, Ligai, 2024. "State-of-the-art review on evaluation indicators of integrated intelligent energy from different perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Fan, Wei & Fan, Ying & Yao, Xing & Yi, Bowen & Jiang, Dalin & Wu, Lin, 2024. "Distributed transaction optimization model of multi-integrated energy systems based on nash negotiation," Renewable Energy, Elsevier, vol. 225(C).
    3. Yi Zhang & Tian Lan & Wei Hu, 2023. "A Two-Stage Robust Optimization Microgrid Model Considering Carbon Trading and Demand Response," Sustainability, MDPI, vol. 15(19), pages 1-22, October.
    4. Qingbo Tan & Zhuning Wang & Wei Fan & Xudong Li & Xiangguang Li & Fanqi Li & Zihao Zhao, 2022. "Development Path and Model Design of a New Energy Vehicle in China," Energies, MDPI, vol. 16(1), pages 1-15, December.
    5. Fan, Wei & Ju, Liwei & Tan, Zhongfu & Li, Xiangguang & Zhang, Amin & Li, Xudong & Wang, Yueping, 2023. "Two-stage distributionally robust optimization model of integrated energy system group considering energy sharing and carbon transfer," Applied Energy, Elsevier, vol. 331(C).
    6. Lili Mo & Zeyu Deng & Haoyong Chen & Junkun Lan, 2023. "Multi-Objective Co-Operative Game-Based Optimization for Park-Level Integrated Energy System Based on Exergy-Economic Analysis," Energies, MDPI, vol. 16(24), pages 1-19, December.
    7. Almeida, José & Soares, Joao & Lezama, Fernando & Vale, Zita & Francois, Bruno, 2024. "Comparison of evolutionary algorithms for solving risk-based energy resource management considering conditional value-at-risk analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 224(PB), pages 87-110.
    8. Zhang, Jinliang & Liu, Ziyi, 2024. "Low carbon economic scheduling model for a park integrated energy system considering integrated demand response, ladder-type carbon trading and fine utilization of hydrogen," Energy, Elsevier, vol. 290(C).
    9. Wang, Zhuo & Hou, Hui & Zhao, Bo & Zhang, Leiqi & Shi, Ying & Xie, Changjun, 2024. "Risk-averse stochastic capacity planning and P2P trading collaborative optimization for multi-energy microgrids considering carbon emission limitations: An asymmetric Nash bargaining approach," Applied Energy, Elsevier, vol. 357(C).
    10. Hou, Hui & Ge, Xiangdi & Yan, Yulin & Lu, Yanchao & Zhang, Ji & Dong, Zhao Yang, 2024. "An integrated energy system “green-carbon” offset mechanism and optimization method with Stackelberg game," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Liying & Lin, Jialin & Dong, Houqi & Wang, Yuqing & Zeng, Ming, 2023. "Demand response comprehensive incentive mechanism-based multi-time scale optimization scheduling for park integrated energy system," Energy, Elsevier, vol. 270(C).
    2. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Zhao, Yunlong & Gao, Chong, 2023. "A stochastic hierarchical optimization and revenue allocation approach for multi-regional integrated energy systems based on cooperative games," Applied Energy, Elsevier, vol. 350(C).
    3. Zhou, Yuan & Wang, Jiangjiang & Yang, Mingxu & Xu, Hangwei, 2023. "Hybrid active and passive strategies for chance-constrained bilevel scheduling of community multi-energy system considering demand-side management and consumer psychology," Applied Energy, Elsevier, vol. 349(C).
    4. Zhang, Zhenwei & Wang, Chengfu & Wu, Qiuwei & Dong, Xiaoming, 2024. "Optimal dispatch for cross-regional integrated energy system with renewable energy uncertainties: A unified spatial-temporal cooperative framework," Energy, Elsevier, vol. 292(C).
    5. Zhao, Naixin & Gu, Wenbo & Zheng, Zipeng & Ma, Tao, 2023. "Multi-objective bi-level planning of the integrated energy system considering uncertain user loads and carbon emission during the equipment manufacturing process," Renewable Energy, Elsevier, vol. 216(C).
    6. Yang, Xiaohui & Wang, Xiaopeng & Deng, Yeheng & Mei, Linghao & Deng, Fuwei & Zhang, Zhonglian, 2023. "Integrated energy system scheduling model based on non-complete interval multi-objective fuzzy optimization," Renewable Energy, Elsevier, vol. 218(C).
    7. Wang, Haibing & Zhao, Anjie & Khan, Muhammad Qasim & Sun, Weiqing, 2024. "Optimal operation of energy hub considering reward-punishment ladder carbon trading and electrothermal demand coupling," Energy, Elsevier, vol. 286(C).
    8. Dezhou Kong & Jianru Jing & Tingyue Gu & Xuanyue Wei & Xingning Sa & Yimin Yang & Zhiang Zhang, 2023. "Theoretical Analysis of Integrated Community Energy Systems (ICES) Considering Integrated Demand Response (IDR): A Review of the System Modelling and Optimization," Energies, MDPI, vol. 16(10), pages 1-22, May.
    9. Lv, Chaoxian & Liang, Rui & Zhang, Ge & Zhang, Xiaotong & Jin, Wei, 2023. "Energy accommodation-oriented interaction of active distribution network and central energy station considering soft open points," Energy, Elsevier, vol. 268(C).
    10. Yan, Rujing & Wang, Jiangjiang & Huo, Shuojie & Qin, Yanbo & Zhang, Jing & Tang, Saiqiu & Wang, Yuwei & Liu, Yan & Zhou, Lin, 2023. "Flexibility improvement and stochastic multi-scenario hybrid optimization for an integrated energy system with high-proportion renewable energy," Energy, Elsevier, vol. 263(PB).
    11. Pan, Chongchao & Jin, Tai & Li, Na & Wang, Guanxiong & Hou, Xiaowang & Gu, Yueqing, 2023. "Multi-objective and two-stage optimization study of integrated energy systems considering P2G and integrated demand responses," Energy, Elsevier, vol. 270(C).
    12. Xu, Xun & Shao, Zhenguo & Chen, Feixiong & Cheng, Guoyang, 2024. "Multi-game optimization operation strategy for integrated energy system considering spatiotemporal correlation of renewable energy," Energy, Elsevier, vol. 303(C).
    13. Ouyang, Tiancheng & Zhang, Mingliang & Wu, Wencong & Zhao, Jiaqi & Xu, Hua, 2023. "A day-ahead planning for multi-energy system in building community," Energy, Elsevier, vol. 267(C).
    14. Wang, Yuwei & Song, Minghao & Jia, Mengyao & Li, Bingkang & Fei, Haoran & Zhang, Yiyue & Wang, Xuejie, 2023. "Multi-objective distributionally robust optimization for hydrogen-involved total renewable energy CCHP planning under source-load uncertainties," Applied Energy, Elsevier, vol. 342(C).
    15. Yang, Yulong & Zhao, Yang & Yan, Gangui & Mu, Gang & Chen, Zhe, 2024. "Real time aggregation control of P2H loads in a virtual power plant based on a multi-period stackelberg game," Energy, Elsevier, vol. 303(C).
    16. Fan, Wei & Fan, Ying & Yao, Xing & Yi, Bowen & Jiang, Dalin & Wu, Lin, 2024. "Distributed transaction optimization model of multi-integrated energy systems based on nash negotiation," Renewable Energy, Elsevier, vol. 225(C).
    17. Sun, Yanpeng & Song, Yuru & Long, Chi & Qin, Meng & Lobonţ, Oana-Ramona, 2023. "How to improve global environmental governance? Lessons learned from climate risk and climate policy uncertainty," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 1666-1676.
    18. Guo, Tianyu & Guo, Qi & Huang, Libin & Guo, Haiping & Lu, Yuanhong & Tu, Liang, 2023. "Microgrid source-network-load-storage master-slave game optimization method considering the energy storage overcharge/overdischarge risk," Energy, Elsevier, vol. 282(C).
    19. Zhihan Shi & Weisong Han & Guangming Zhang & Zhiqing Bai & Mingxiang Zhu & Xiaodong Lv, 2022. "Research on Low-Carbon Energy Sharing through the Alliance of Integrated Energy Systems with Multiple Uncertainties," Energies, MDPI, vol. 15(24), pages 1-20, December.
    20. Ding, Zhixiong & Wu, Wei, 2024. "Simulation of a multi-level absorption thermal battery with variable solution flow rate for adjustable cooling capacity," Energy, Elsevier, vol. 301(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pc:s036054422202669x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.