IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v74y2018icp663-676.html
   My bibliography  Save this article

Integration of behavioral effects from vehicle choice models into long-term energy systems optimization models

Author

Listed:
  • Ramea, Kalai
  • Bunch, David S.
  • Yang, Christopher
  • Yeh, Sonia
  • Ogden, Joan M.

Abstract

Long-term energy systems models have been used extensively in energy planning and climate policy analysis. However, specifically in energy systems optimization models, heterogeneity of consumer preferences for competing energy technologies (e.g., vehicles), has not been adequately represented, leading to behaviorally unrealistic modeling results. This can lead to policy analysis results that are viewed by stakeholders as clearly deficient. This paper shows how heterogeneous consumer behavioral effects can be introduced into these models in the form of perceived disutility costs, to more realistically capture consumer choice in making technology purchase decisions. We developed a novel methodology that incorporates the theory of a classic consumer choice model into a commonly used long-term energy systems modeling framework using a case study of light-duty vehicles. A diverse set of consumer segments (thirty-six) is created to represent observable, identifiable differences in factors such as annual driving distances and attitude towards risks of new technology. Non-monetary or “disutility” costs associated with these factors are introduced to capture the differences in preferences across consumer segments for various technologies. We also create clones within each consumer segment to capture randomly distributed unobservable differences in preferences. We provide and review results for a specific example that includes external factors such as recharging/refueling station availability, battery size of electric vehicles, recharging time and perceived technology risks. Although the example is for light-duty vehicles in the US using a specific modeling system, this approach can be implemented more broadly to model the adoption of consumer technologies in other sectors or regions in similar energy systems modeling frameworks.

Suggested Citation

  • Ramea, Kalai & Bunch, David S. & Yang, Christopher & Yeh, Sonia & Ogden, Joan M., 2018. "Integration of behavioral effects from vehicle choice models into long-term energy systems optimization models," Energy Economics, Elsevier, vol. 74(C), pages 663-676.
  • Handle: RePEc:eee:eneeco:v:74:y:2018:i:c:p:663-676
    DOI: 10.1016/j.eneco.2018.06.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988318302573
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2018.06.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cayla, Jean-Michel & Maïzi, Nadia, 2015. "Integrating household behavior and heterogeneity into the TIMES-Households model," Applied Energy, Elsevier, vol. 139(C), pages 56-67.
    2. Tattini, Jacopo & Ramea, Kalai & Gargiulo, Maurizio & Yang, Christopher & Mulholland, Eamonn & Yeh, Sonia & Karlsson, Kenneth, 2018. "Improving the representation of modal choice into bottom-up optimization energy system models – The MoCho-TIMES model," Applied Energy, Elsevier, vol. 212(C), pages 265-282.
    3. DeCarolis, Joseph & Daly, Hannah & Dodds, Paul & Keppo, Ilkka & Li, Francis & McDowall, Will & Pye, Steve & Strachan, Neil & Trutnevyte, Evelina & Usher, Will & Winning, Matthew & Yeh, Sonia & Zeyring, 2017. "Formalizing best practice for energy system optimization modelling," Applied Energy, Elsevier, vol. 194(C), pages 184-198.
    4. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, January.
    5. Axsen, Jonn & Kurani, Kenneth S, 2010. "Anticipating plug-in hybrid vehicle energy impacts in California: Constructing consumer-informed recharge profiles," Institute of Transportation Studies, Working Paper Series qt3h69n0cs, Institute of Transportation Studies, UC Davis.
    6. Daly, Hannah E. & Ramea, Kalai & Chiodi, Alessandro & Yeh, Sonia & Gargiulo, Maurizio & Gallachóir, Brian Ó, 2014. "Incorporating travel behaviour and travel time into TIMES energy system models," Applied Energy, Elsevier, vol. 135(C), pages 429-439.
    7. Helfand, Gloria & Wolverton, Ann, 2011. "Evaluating the Consumer Response to Fuel Economy: A Review of the Literature," International Review of Environmental and Resource Economics, now publishers, vol. 5(2), pages 103-146, May.
    8. Bunch, David S. & Rocke, David M., 2016. "Variance-component-based nested logit specifications: Improved formulation, and practical microsimulation of random disturbance terms," Journal of choice modelling, Elsevier, vol. 21(C), pages 30-35.
    9. Wilson, Deborah & Swisher, Joel, 1993. "Exploring the gap : Top-down versus bottom-up analyses of the cost of mitigating global warming," Energy Policy, Elsevier, vol. 21(3), pages 249-263, March.
    10. Yang, Christopher & Yeh, Sonia & Zakerinia, Saleh & Ramea, Kalai & McCollum, David, 2015. "Achieving California's 80% greenhouse gas reduction target in 2050: Technology, policy and scenario analysis using CA-TIMES energy economic systems model," Energy Policy, Elsevier, vol. 77(C), pages 118-130.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aryanpur, Vahid & Balyk, Olexandr & Daly, Hannah & Ó Gallachóir, Brian & Glynn, James, 2022. "Decarbonisation of passenger light-duty vehicles using spatially resolved TIMES-Ireland Model," Applied Energy, Elsevier, vol. 316(C).
    2. Laurent Franckx, 2019. "Working Paper 01-19 - Future evolution of the car stock in Belgium: CASMO, the new satellite of PLANET," Working Papers 1901, Federal Planning Bureau, Belgium.
    3. Sachs, Julia & Meng, Yiming & Giarola, Sara & Hawkes, Adam, 2019. "An agent-based model for energy investment decisions in the residential sector," Energy, Elsevier, vol. 172(C), pages 752-768.
    4. Lerede, Daniele & Pinto, Giuseppe & Saccone, Mirko & Bustreo, Chiara & Capozzoli, Alfonso & Savoldi, Laura, 2021. "Application of a Stochastic Multicriteria Acceptability Analysis to support decision-making within a macro-scale energy model: Case study of the electrification of the road European transport sector," Energy, Elsevier, vol. 236(C).
    5. Florian Leblanc & Ruben Bibas & Silvana Mima & Matteo Muratori & Shogo Sakamoto & Fuminori Sano & Nico Bauer & Vassilis Daioglou & Shinichiro Fujimori & Matthew J. Gidden & Estsushi Kato & Steven K. R, 2022. "The contribution of bioenergy to the decarbonization of transport: a multi-model assessment," Climatic Change, Springer, vol. 170(3), pages 1-21, February.
    6. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    7. Muratori, Matteo & Jadun, Paige & Bush, Brian & Bielen, David & Vimmerstedt, Laura & Gonder, Jeff & Gearhart, Chris & Arent, Doug, 2020. "Future integrated mobility-energy systems: A modeling perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    8. Marianne Pedinotti-Castelle & Pierre-Olivier Pineau & Kathleen Vaillancourt & Ben Amor, 2021. "Changing Technology or Behavior? The Impacts of a Behavioral Disruption," Sustainability, MDPI, vol. 13(11), pages 1-23, May.
    9. Pedinotti-Castelle, Marianne & Pineau, Pierre-Olivier & Vaillancourt, Kathleen & Amor, Ben, 2022. "Freight transport modal shifts in a TIMES energy model: Impacts of endogenous and exogenous modeling choice," Applied Energy, Elsevier, vol. 324(C).
    10. Yang, Christopher & Zakerinia, Saleh & Ramea, Kalai & Miller, Marshall, 2018. "Development of Integrated Vehicle and Fuel Scenarios in a National Energy System Model for Low Carbon U.S. Transportation Futures," Institute of Transportation Studies, Working Paper Series qt9cb5t3k4, Institute of Transportation Studies, UC Davis.
    11. Niklas Wulff & Felix Steck & Hans Christian Gils & Carsten Hoyer-Klick & Bent van den Adel & John E. Anderson, 2020. "Comparing Power-System and User-Oriented Battery Electric Vehicle Charging Representation and Its Implications on Energy System Modeling," Energies, MDPI, vol. 13(5), pages 1-41, March.
    12. Shen, Meng & Li, Xiang & Lu, Yujie & Cui, Qingbin & Wei, Yi-Ming, 2021. "Personality-based normative feedback intervention for energy conservation," Energy Economics, Elsevier, vol. 104(C).
    13. Schwab, Julia & Sölch, Christian & Zöttl, Gregor, 2022. "Electric Vehicle Cost in 2035: The impact of market penetration and charging strategies," Energy Economics, Elsevier, vol. 114(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salvucci, Raffaele & Tattini, Jacopo & Gargiulo, Maurizio & Lehtilä, Antti & Karlsson, Kenneth, 2018. "Modelling transport modal shift in TIMES models through elasticities of substitution," Applied Energy, Elsevier, vol. 232(C), pages 740-751.
    2. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Li, Pei-Hao & Keppo, Ilkka & Strachan, Neil, 2018. "Incorporating homeowners' preferences of heating technologies in the UK TIMES model," Energy, Elsevier, vol. 148(C), pages 716-727.
    4. Tattini, Jacopo & Ramea, Kalai & Gargiulo, Maurizio & Yang, Christopher & Mulholland, Eamonn & Yeh, Sonia & Karlsson, Kenneth, 2018. "Improving the representation of modal choice into bottom-up optimization energy system models – The MoCho-TIMES model," Applied Energy, Elsevier, vol. 212(C), pages 265-282.
    5. Salvucci, Raffaele & Gargiulo, Maurizio & Karlsson, Kenneth, 2019. "The role of modal shift in decarbonising the Scandinavian transport sector: Applying substitution elasticities in TIMES-Nordic," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. DeCarolis, Joseph & Daly, Hannah & Dodds, Paul & Keppo, Ilkka & Li, Francis & McDowall, Will & Pye, Steve & Strachan, Neil & Trutnevyte, Evelina & Usher, Will & Winning, Matthew & Yeh, Sonia & Zeyring, 2017. "Formalizing best practice for energy system optimization modelling," Applied Energy, Elsevier, vol. 194(C), pages 184-198.
    7. Raffaele Salvucci & Stefan Petrović & Kenneth Karlsson & Markus Wråke & Tanu Priya Uteng & Olexandr Balyk, 2019. "Energy Scenario Analysis for the Nordic Transport Sector: A Critical Review," Energies, MDPI, vol. 12(12), pages 1-19, June.
    8. Pye, Steve & Daly, Hannah, 2015. "Modelling sustainable urban travel in a whole systems energy model," Applied Energy, Elsevier, vol. 159(C), pages 97-107.
    9. Dennis Dreier & Mark Howells, 2019. "OSeMOSYS-PuLP: A Stochastic Modeling Framework for Long-Term Energy Systems Modeling," Energies, MDPI, vol. 12(7), pages 1-26, April.
    10. Andreas Andreou & Panagiotis Fragkos & Theofano Fotiou & Faidra Filippidou, 2022. "Assessing Lifestyle Transformations and Their Systemic Effects in Energy-System and Integrated Assessment Models: A Review of Current Methods and Data," Energies, MDPI, vol. 15(14), pages 1-24, July.
    11. Daziano, Ricardo A., 2015. "Inference on mode preferences, vehicle purchases, and the energy paradox using a Bayesian structural choice model," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 1-26.
    12. Hackbarth, André & Madlener, Reinhard, 2016. "Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 89-111.
    13. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    14. Reema Bera & Bhargab Maitra, 2021. "Analyzing Prospective Owners’ Choice Decision towards Plug-in Hybrid Electric Vehicles in Urban India: A Stated Preference Discrete Choice Experiment," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    15. Charlotte Senkpiel & Audrey Dobbins & Christina Kockel & Jan Steinbach & Ulrich Fahl & Farina Wille & Joachim Globisch & Sandra Wassermann & Bert Droste-Franke & Wolfgang Hauser & Claudia Hofer & Lars, 2020. "Integrating Methods and Empirical Findings from Social and Behavioural Sciences into Energy System Models—Motivation and Possible Approaches," Energies, MDPI, vol. 13(18), pages 1-30, September.
    16. Zhu, Qianru & Leibowicz, Benjamin D. & Busby, Joshua W. & Shidore, Sarang & Adelman, David E. & Olmstead, Sheila M., 2022. "Enhancing policy realism in energy system optimization models: Politically feasible decarbonization pathways for the United States," Energy Policy, Elsevier, vol. 161(C).
    17. Yang, Christopher & Zakerinia, Saleh & Ramea, Kalai & Miller, Marshall, 2018. "Development of Integrated Vehicle and Fuel Scenarios in a National Energy System Model for Low Carbon U.S. Transportation Futures," Institute of Transportation Studies, Working Paper Series qt9cb5t3k4, Institute of Transportation Studies, UC Davis.
    18. Horak, Daniel & Hainoun, Ali & Neugebauer, Georg & Stoeglehner, Gernot, 2022. "A review of spatio-temporal urban energy system modeling for urban decarbonization strategy formulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    19. Thiel, Christian & Nijs, Wouter & Simoes, Sofia & Schmidt, Johannes & van Zyl, Arnold & Schmid, Erwin, 2016. "The impact of the EU car CO2 regulation on the energy system and the role of electro-mobility to achieve transport decarbonisation," Energy Policy, Elsevier, vol. 96(C), pages 153-166.
    20. Wang, Huan & Chen, Wenying, 2019. "Modelling deep decarbonization of industrial energy consumption under 2-degree target: Comparing China, India and Western Europe," Applied Energy, Elsevier, vol. 238(C), pages 1563-1572.

    More about this item

    Keywords

    Energy systems models; Consumer behavior; Vehicle choice; Transportation; Light-duty vehicles;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C54 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Quantitative Policy Modeling
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:74:y:2018:i:c:p:663-676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.