IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v50y2013icp168-176.html

On the use of niching genetic algorithms for variable selection in solar radiation estimation

Author

Listed:
  • Will, A.
  • Bustos, J.
  • Bocco, M.
  • Gotay, J.
  • Lamelas, C.

Abstract

Prediction of climatic variables, in particular those related to wind and solar radiation, has developed a huge interest in recent years, mainly due to its applications to renewable energy. In many cases there is a large number of factors that influence the climatic variable of interest, and the researcher chooses the most relevant ones (based on previous knowledge of the region, availability, etc.) and runs a series of experiments combining the available data in order to find the combination that provides the best prediction.

Suggested Citation

  • Will, A. & Bustos, J. & Bocco, M. & Gotay, J. & Lamelas, C., 2013. "On the use of niching genetic algorithms for variable selection in solar radiation estimation," Renewable Energy, Elsevier, vol. 50(C), pages 168-176.
  • Handle: RePEc:eee:renene:v:50:y:2013:i:c:p:168-176
    DOI: 10.1016/j.renene.2012.06.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112003904
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.06.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Rehman, Shafiqur & Mohandes, Mohamed, 2008. "Artificial neural network estimation of global solar radiation using air temperature and relative humidity," Energy Policy, Elsevier, vol. 36(2), pages 571-576, February.
    2. Marco Ratto, 2008. "Analysing DSGE Models with Global Sensitivity Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 31(2), pages 115-139, March.
    3. Bilgili, Mehmet & Sahin, Besir & Yasar, Abdulkadir, 2007. "Application of artificial neural networks for the wind speed prediction of target station using reference stations data," Renewable Energy, Elsevier, vol. 32(14), pages 2350-2360.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khorasanizadeh, Hossein & Mohammadi, Kasra, 2016. "Diffuse solar radiation on a horizontal surface: Reviewing and categorizing the empirical models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 338-362.
    2. Shubham Gupta & Amit Kumar Singh & Sachin Mishra & Pradeep Vishnuram & Nagaraju Dharavat & Narayanamoorthi Rajamanickam & Ch. Naga Sai Kalyan & Kareem M. AboRas & Naveen Kumar Sharma & Mohit Bajaj, 2023. "Estimation of Solar Radiation with Consideration of Terrestrial Losses at a Selected Location—A Review," Sustainability, MDPI, vol. 15(13), pages 1-29, June.
    3. Gokan, Toshitaka & Kichko, Sergey & Thisse, Jacques-François, 2019. "How do trade and communication costs shape the spatial organization of firms?," Journal of Urban Economics, Elsevier, vol. 113(C).
    4. Mohammadi, Kasra & Shamshirband, Shahaboddin & Kamsin, Amirrudin & Lai, P.C. & Mansor, Zulkefli, 2016. "Identifying the most significant input parameters for predicting global solar radiation using an ANFIS selection procedure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 423-434.
    5. Wu, Ji & Chan, Chee Keong & Zhang, Yu & Xiong, Bin Yu & Zhang, Qing Hai, 2014. "Prediction of solar radiation with genetic approach combing multi-model framework," Renewable Energy, Elsevier, vol. 66(C), pages 132-139.
    6. Yao, Wanxiang & Zhang, Chunxiao & Hao, Haodong & Wang, Xiao & Li, Xianli, 2018. "A support vector machine approach to estimate global solar radiation with the influence of fog and haze," Renewable Energy, Elsevier, vol. 128(PA), pages 155-162.
    7. Samuel Chukwujindu, Nwokolo, 2017. "A comprehensive review of empirical models for estimating global solar radiation in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 955-995.
    8. Mohammadi, Kasra & Shamshirband, Shahaboddin & Petković, Dalibor & Khorasanizadeh, Hossein, 2016. "Determining the most important variables for diffuse solar radiation prediction using adaptive neuro-fuzzy methodology; case study: City of Kerman, Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1570-1579.
    9. Almorox, Javier & Bocco, Mónica & Willington, Enrique, 2013. "Estimation of daily global solar radiation from measured temperatures at Cañada de Luque, Córdoba, Argentina," Renewable Energy, Elsevier, vol. 60(C), pages 382-387.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jabar H. Yousif & Hussein A. Kazem & John Boland, 2017. "Predictive Models for Photovoltaic Electricity Production in Hot Weather Conditions," Energies, MDPI, vol. 10(7), pages 1-19, July.
    2. Makade, Rahul G. & Chakrabarti, Siddharth & Jamil, Basharat & Sakhale, C.N., 2020. "Estimation of global solar radiation for the tropical wet climatic region of India: A theory of experimentation approach," Renewable Energy, Elsevier, vol. 146(C), pages 2044-2059.
    3. Fei Wang & Zengqiang Mi & Shi Su & Hongshan Zhao, 2012. "Short-Term Solar Irradiance Forecasting Model Based on Artificial Neural Network Using Statistical Feature Parameters," Energies, MDPI, vol. 5(5), pages 1-16, May.
    4. Kolasa, Marcin & Ravgotra, Sahil & Zabczyk, Pawel, 2025. "Monetary policy and exchange rate dynamics in a behavioral open economy model," Journal of International Economics, Elsevier, vol. 155(C).
    5. Albonico, Alice & Paccagnini, Alessia & Tirelli, Patrizio, 2017. "Great recession, slow recovery and muted fiscal policies in the US," Journal of Economic Dynamics and Control, Elsevier, vol. 81(C), pages 140-161.
    6. Cadenas, E. & Jaramillo, O.A. & Rivera, W., 2010. "Analysis and forecasting of wind velocity in chetumal, quintana roo, using the single exponential smoothing method," Renewable Energy, Elsevier, vol. 35(5), pages 925-930.
    7. Benchimol, Jonathan & Bounader, Lahcen & Dotta, Mario, 2025. "Estimating Behavioral Inattention," Journal of Economic Behavior & Organization, Elsevier, vol. 236(C).
    8. Tascikaraoglu, Akin & Sanandaji, Borhan M. & Poolla, Kameshwar & Varaiya, Pravin, 2016. "Exploiting sparsity of interconnections in spatio-temporal wind speed forecasting using Wavelet Transform," Applied Energy, Elsevier, vol. 165(C), pages 735-747.
    9. Pye, Steve & Sabio, Nagore & Strachan, Neil, 2015. "An integrated systematic analysis of uncertainties in UK energy transition pathways," Energy Policy, Elsevier, vol. 87(C), pages 673-684.
    10. Cristiano Cantore & Filippo Ferroni & Miguel León-Ledesma, 2021. "The Missing Link: Monetary Policy and The Labor Share," Journal of the European Economic Association, European Economic Association, vol. 19(3), pages 1592-1620.
    11. Bletzinger, Tilman & Lalik, Magdalena, 2017. "The impact of constrained monetary policy on fiscal multipliers on output and inflation," Working Paper Series 2019, European Central Bank.
    12. Sommer, Wijbrand & Valstar, Johan & Leusbrock, Ingo & Grotenhuis, Tim & Rijnaarts, Huub, 2015. "Optimization and spatial pattern of large-scale aquifer thermal energy storage," Applied Energy, Elsevier, vol. 137(C), pages 322-337.
    13. Kebir, Nisrine & Maaroufi, Mohamed, 2017. "Technical losses computation for short-term predictive management enhancement of grid-connected distributed generations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1011-1021.
    14. Hu, Jianming & Wang, Jianzhou & Zeng, Guowei, 2013. "A hybrid forecasting approach applied to wind speed time series," Renewable Energy, Elsevier, vol. 60(C), pages 185-194.
    15. Yilmazkuday, Hakan, 2014. "Gasoline prices, transport costs, and the U.S. business cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 45(C), pages 165-179.
    16. Julien Sainte-Marie & Paul-Henry Cournède, 2019. "Insights of Global Sensitivity Analysis in Biological Models with Dependent Parameters," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(1), pages 92-111, March.
    17. Beqiraj Elton & Di Bartolomeo Giovanni & Serpieri Carolina, 2017. "Bounded-rationality and heterogeneous agents: Long or short forecasters?," wp.comunite 00132, Department of Communication, University of Teramo.
    18. Evren Caglar & Jagjit S. Chadha & Katsuyuki Shibayama, 2011. "Bayesian Estimation of DSGE models: Is the Workhorse Model Identified?," Studies in Economics 1125, School of Economics, University of Kent.
    19. Daniel Harenberg & Stefano Marelli & Bruno Sudret & Viktor Winschel, 2019. "Uncertainty quantification and global sensitivity analysis for economic models," Quantitative Economics, Econometric Society, vol. 10(1), pages 1-41, January.
    20. Wagener, Thorsten & Pianosi, Francesca, 2019. "What has Global Sensitivity Analysis ever done for us? A systematic review to support scientific advancement and to inform policy-making in earth system modelling," Earth Arxiv g9ma5, Center for Open Science.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:50:y:2013:i:c:p:168-176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.