IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v632y2023ip1s0378437123008531.html
   My bibliography  Save this article

Investigation of traffic-driven epidemic spreading by taxi trip data

Author

Listed:
  • Lu, Zhong-Wen
  • Xu, Yuan-Hao
  • Chen, Jie
  • Hu, Mao-Bin

Abstract

Urban transportation systems account for tremendous population movements, which can also trigger epidemic outbreaks. This paper investigates the coupling of epidemic spreading and human mobility via taxi-trip data analysis and the Markov chain approach, and proposes targeted epidemic prevention measures. Significant variations in travel patterns are observed across different taxi zones within the city, and these disparities have a substantial impact on epidemic dynamics. First, the probability of taxi drivers and passengers traveling among taxi zones is obtained from empirical data. Abstracting human travel pattern as Markov process, a traffic-driven epidemic spreading model is established. Considering the impact of trip probability on disease spreading, the model can effectively reproduce the outbreak of COVID-19 in New York City, with correct features in different boroughs. Quantitative parameters are derived to indicate the influence of taxi zones and origin-destination trips on epidemic transmission. Applying prevention measures to a small number of important zones or key origin-destination trips in the early stage of spreading, the scale of epidemic outbreaks can be significantly reduced. This research offers insights for suppressing epidemic spread in densely populated metropolitan areas, with the potential to benefit policy efforts.

Suggested Citation

  • Lu, Zhong-Wen & Xu, Yuan-Hao & Chen, Jie & Hu, Mao-Bin, 2023. "Investigation of traffic-driven epidemic spreading by taxi trip data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
  • Handle: RePEc:eee:phsmap:v:632:y:2023:i:p1:s0378437123008531
    DOI: 10.1016/j.physa.2023.129298
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123008531
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129298?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen Xie & Dexin Yu & Xiaoyu Zheng & Zhuorui Wang & Zhongtai Jiang, 2021. "Revealing spatiotemporal travel demand and community structure characteristics with taxi trip data: A case study of New York City," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-21, November.
    2. Jürgen Hackl & Thibaut Dubernet, 2019. "Epidemic Spreading in Urban Areas Using Agent-Based Transportation Models," Future Internet, MDPI, vol. 11(4), pages 1-14, April.
    3. Yongjie Wang & Maolin Li, 2021. "Optimization Algorithm Design for the Taxi-Sharing Problem and Application," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-10, August.
    4. Daniel Silver & Thiago H Silva, 2021. "A Markov model of urban evolution: Neighbourhood change as a complex process," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-29, January.
    5. Oleguer Sagarra & Michael Szell & Paolo Santi & Albert Díaz-Guilera & Carlo Ratti, 2015. "Supersampling and Network Reconstruction of Urban Mobility," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-15, August.
    6. Yang, Jin-Xuan, 2020. "The spreading of infectious diseases with recurrent mobility of community population," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    7. Qian, Xinwu & Ukkusuri, Satish V., 2021. "Connecting urban transportation systems with the spread of infectious diseases: A Trans-SEIR modeling approach," Transportation Research Part B: Methodological, Elsevier, vol. 145(C), pages 185-211.
    8. Liu, Jielun & Ong, Ghim Ping & Pang, Vincent Junxiong, 2022. "Modelling effectiveness of COVID-19 pandemic control policies using an Area-based SEIR model with consideration of infection during interzonal travel," Transportation Research Part A: Policy and Practice, Elsevier, vol. 161(C), pages 25-47.
    9. Shao, Qi & Han, Dun, 2022. "Epidemic spreading in metapopulation networks with heterogeneous mobility rates," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    10. Fan Gao & Jinjun Tang & Zhitao Li, 2022. "Effects of spatial units and travel modes on urban commuting demand modeling," Transportation, Springer, vol. 49(6), pages 1549-1575, December.
    11. Chengbin Peng & Xiaogang Jin & Ka-Chun Wong & Meixia Shi & Pietro Liò, 2012. "Collective Human Mobility Pattern from Taxi Trips in Urban Area," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-8, April.
    12. Krause, Cory M. & Zhang, Lei, 2019. "Short-term travel behavior prediction with GPS, land use, and point of interest data," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 349-361.
    13. Stephen Eubank & Hasan Guclu & V. S. Anil Kumar & Madhav V. Marathe & Aravind Srinivasan & Zoltán Toroczkai & Nan Wang, 2004. "Modelling disease outbreaks in realistic urban social networks," Nature, Nature, vol. 429(6988), pages 180-184, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezapour, Shabnam & Baghaian, Atefe & Naderi, Nazanin & Sarmiento, Juan P., 2023. "Infection transmission and prevention in metropolises with heterogeneous and dynamic populations," European Journal of Operational Research, Elsevier, vol. 304(1), pages 113-138.
    2. Floriana Gargiulo & Sônia Ternes & Sylvie Huet & Guillaume Deffuant, 2010. "An Iterative Approach for Generating Statistically Realistic Populations of Households," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-9, January.
    3. Saturnino Luz & Masood Masoodian, 2022. "Exploring Environmental and Geographical Factors Influencing the Spread of Infectious Diseases with Interactive Maps," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    4. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    5. Pablo D. Fajgelbaum & Amit Khandelwal & Wookun Kim & Cristiano Mantovani & Edouard Schaal, 2021. "Optimal Lockdown in a Commuting Network," American Economic Review: Insights, American Economic Association, vol. 3(4), pages 503-522, December.
    6. Moritz Kersting & Andreas Bossert & Leif Sörensen & Benjamin Wacker & Jan Chr. Schlüter, 2021. "Predicting effectiveness of countermeasures during the COVID-19 outbreak in South Africa using agent-based simulation," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
    7. Bisin, Alberto & Moro, Andrea, 2022. "Spatial‐SIR with network structure and behavior: Lockdown rules and the Lucas critique," Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 370-388.
    8. Wiriya Mahikul & Somkid Kripattanapong & Piya Hanvoravongchai & Aronrag Meeyai & Sopon Iamsirithaworn & Prasert Auewarakul & Wirichada Pan-ngum, 2020. "Contact Mixing Patterns and Population Movement among Migrant Workers in an Urban Setting in Thailand," IJERPH, MDPI, vol. 17(7), pages 1-11, March.
    9. Chen, Yong & Geng, Maosi & Zeng, Jiaqi & Yang, Di & Zhang, Lei & Chen, Xiqun (Michael), 2023. "A novel ensemble model with conditional intervening opportunities for ride-hailing travel mobility estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).
    10. Chen, Enhui & Stathopoulos, Amanda & Nie, Yu (Marco), 2022. "Transfer station choice in a multimodal transit system: An empirical study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 337-355.
    11. Stefano Guarino & Enrico Mastrostefano & Massimo Bernaschi & Alessandro Celestini & Marco Cianfriglia & Davide Torre & Lena Rebecca Zastrow, 2021. "Inferring Urban Social Networks from Publicly Available Data," Future Internet, MDPI, vol. 13(5), pages 1-45, April.
    12. Li, Ze-Tao & Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2023. "Exploring the topological characteristics of urban trip networks based on taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    13. Xie, Meiling & Li, Yuhan & Feng, Minyu & Kurths, Jürgen, 2023. "Contact-dependent infection and mobility in the metapopulation SIR model from a birth–death process perspective," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    14. Cai, Hua & Zhan, Xiaowei & Zhu, Ji & Jia, Xiaoping & Chiu, Anthony S.F. & Xu, Ming, 2016. "Understanding taxi travel patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 590-597.
    15. Li, Siping & Zhou, Yaoming & Kundu, Tanmoy & Sheu, Jiuh-Biing, 2021. "Spatiotemporal variation of the worldwide air transportation network induced by COVID-19 pandemic in 2020," Transport Policy, Elsevier, vol. 111(C), pages 168-184.
    16. Thompson, C.A. & Saxberg, K. & Lega, J. & Tong, D. & Brown, H.E., 2019. "A cumulative gravity model for inter-urban spatial interaction at different scales," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    17. Xiaoyan Mu & Anthony Gar-On Yeh & Xiaohu Zhang, 2021. "The interplay of spatial spread of COVID-19 and human mobility in the urban system of China during the Chinese New Year," Environment and Planning B, , vol. 48(7), pages 1955-1971, September.
    18. Hector Eduardo Roman & Fabrizio Croccolo, 2021. "Spreading of Infections on Network Models: Percolation Clusters and Random Trees," Mathematics, MDPI, vol. 9(23), pages 1-22, November.
    19. Alberto Bisin & Andrea Moro, 2020. "Learning Epidemiology by Doing: The Empirical Implications of a Spatial-SIR Model with Behavioral Responses," NBER Working Papers 27590, National Bureau of Economic Research, Inc.
    20. Richard C. Larson, 2007. "Simple Models of Influenza Progression Within a Heterogeneous Population," Operations Research, INFORMS, vol. 55(3), pages 399-412, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:632:y:2023:i:p1:s0378437123008531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.