IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0259694.html
   My bibliography  Save this article

Revealing spatiotemporal travel demand and community structure characteristics with taxi trip data: A case study of New York City

Author

Listed:
  • Chen Xie
  • Dexin Yu
  • Xiaoyu Zheng
  • Zhuorui Wang
  • Zhongtai Jiang

Abstract

Urban traffic demand distribution is dynamic in both space and time. A thorough analysis of individuals’ travel patterns can effectively reflect the dynamics of a city. This study aims to develop an analytical framework to explore the spatiotemporal traffic demand and the characteristics of the community structure shaped by travel, which is analyzed empirically in New York City. It uses spatial statistics and graph-based approaches to quantify travel behaviors and generate previously unobtainable insights. Specifically, people primarily travel for commuting on weekdays and entertainment on weekends. On weekdays, people tend to arrive in the financial and commercial areas in the morning, and the functions of zones arrived in the evening are more diversified. While on weekends, people are more likely to arrive at parks and department stores during the daytime and theaters at night. These hotspots show positive spatial autocorrelation at a significance level of p = 0.001. In addition, the travel flow at different peak times form relatively stable community structures, we find interesting phenomena through the complex network theory: 1) Every community has a very small number of taxi zones (TZs) with a large number of passengers, and the weighted degree of TZs in the community follows power-law distribution; 2) As the importance of TZs increases, their interaction intensity within the community gradually increases, or increases and then decreases. In other words, the formation of a community is determined by the key TZs with numerous traffic demands, but these TZs may have limited connection with the community in which they are located. The proposed analytical framework and results provide practical insights for urban and transportation planning.

Suggested Citation

  • Chen Xie & Dexin Yu & Xiaoyu Zheng & Zhuorui Wang & Zhongtai Jiang, 2021. "Revealing spatiotemporal travel demand and community structure characteristics with taxi trip data: A case study of New York City," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-21, November.
  • Handle: RePEc:plo:pone00:0259694
    DOI: 10.1371/journal.pone.0259694
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0259694
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0259694&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0259694?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Liye & Meng, Qiang & Fang Fwa, Tien, 2019. "Big AIS data based spatial-temporal analyses of ship traffic in Singapore port waters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 287-304.
    2. Peter Widhalm & Yingxiang Yang & Michael Ulm & Shounak Athavale & Marta González, 2015. "Discovering urban activity patterns in cell phone data," Transportation, Springer, vol. 42(4), pages 597-623, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Zhong-Wen & Xu, Yuan-Hao & Chen, Jie & Hu, Mao-Bin, 2023. "Investigation of traffic-driven epidemic spreading by taxi trip data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    2. Zhang, Xiaojian & Zhao, Xilei & Xu, Yiming & Nilsson, Daniel & Lovreglio, Ruggiero, 2024. "Situational-aware multi-graph convolutional recurrent network (SA-MGCRN) for travel demand forecasting during wildfires," Transportation Research Part A: Policy and Practice, Elsevier, vol. 190(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Meizhi & Lu, Jing, 2020. "The analysis of maritime piracy occurred in Southeast Asia by using Bayesian network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 139(C).
    2. Claudio Gariazzo & Armando Pelliccioni & Maria Paola Bogliolo, 2019. "Spatiotemporal Analysis of Urban Mobility Using Aggregate Mobile Phone Derived Presence and Demographic Data: A Case Study in the City of Rome, Italy," Data, MDPI, vol. 4(1), pages 1-25, January.
    3. Eisuke Watanabe & Ryuichi Shibasaki, 2023. "Extraction of Bunkering Services from Automatic Identification System Data and Their International Comparisons," Sustainability, MDPI, vol. 15(24), pages 1-19, December.
    4. Fangye Du & Jiaoe Wang & Liang Mao & Jian Kang, 2024. "Daily rhythm of urban space usage: insights from the nexus of urban functions and human mobility," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
    5. Mohammadi, Neda & Taylor, John E., 2017. "Urban energy flux: Spatiotemporal fluctuations of building energy consumption and human mobility-driven prediction," Applied Energy, Elsevier, vol. 195(C), pages 810-818.
    6. Yang, Zhisen & Wan, Chengpeng & Yu, Qing & Yin, Jingbo & Yang, Zaili, 2023. "A machine learning-based Bayesian model for predicting the duration of ship detention in PSC inspection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    7. Sheng Wei & Lei Wang, 2020. "Examining the population flow network in China and its implications for epidemic control based on Baidu migration data," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-10, December.
    8. Sugrue, Dennis & Adriaens, Peter, 2021. "A data fusion approach to predict shipping efficiency for bulk carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    9. Jin, Lianjie & Chen, Jing & Chen, Zilin & Sun, Xiangjun & Yu, Bin, 2022. "Impact of COVID-19 on China's international liner shipping network based on AIS data," Transport Policy, Elsevier, vol. 121(C), pages 90-99.
    10. Qingru Zou & Xiangming Yao & Peng Zhao & Heng Wei & Hui Ren, 2018. "Detecting home location and trip purposes for cardholders by mining smart card transaction data in Beijing subway," Transportation, Springer, vol. 45(3), pages 919-944, May.
    11. Cheng Shi & Yujia Zhai & Dongying Li, 2023. "Urban tourists’ spatial distribution and subgroup identification in a metropolis --the examination applying mobile signaling data and latent profile analysis," Information Technology & Tourism, Springer, vol. 25(3), pages 453-476, September.
    12. Leonardo M. Millefiori & Paolo Braca & Dimitris Zissis & Giannis Spiliopoulos & Stefano Marano & Peter K. Willett & Sandro Carniel, 2020. "COVID-19 Impact on Global Maritime Mobility," Papers 2009.06960, arXiv.org, revised Mar 2021.
    13. Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2022. "Maritime traffic probabilistic prediction based on ship motion pattern extraction," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    14. Zhao, Shuangming & Zhao, Pengxiang & Cui, Yunfan, 2017. "A network centrality measure framework for analyzing urban traffic flow: A case study of Wuhan, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 143-157.
    15. Zhang, Weibin & Feng, Xinyu & Goerlandt, Floris & Liu, Qing, 2020. "Towards a Convolutional Neural Network model for classifying regional ship collision risk levels for waterway risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    16. Xuesong Gao & Lun Liu & Dinghua Ou & Haomiao Yuwu, 2023. "Using mobile phone data to probe the mobility‐related well‐being of rural residents: A case study of Chengdu, China," Regional Science Policy & Practice, Wiley Blackwell, vol. 15(9), pages 1893-1906, December.
    17. Mohammadi, Neda & Taylor, John E., 2017. "Urban infrastructure-mobility energy flux," Energy, Elsevier, vol. 140(P1), pages 716-728.
    18. Meead Saberi & Taha H. Rashidi & Milad Ghasri & Kenneth Ewe, 2018. "A Complex Network Methodology for Travel Demand Model Evaluation and Validation," Networks and Spatial Economics, Springer, vol. 18(4), pages 1051-1073, December.
    19. Yang, Zhisen & Yu, Qing & Yang, Zaili & Wan, Chengpeng, 2024. "A data-driven Bayesian model for evaluating the duration of detention of ships in PSC inspections," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    20. Zhang, Jinfen & Liu, Jiongjiong & Hirdaris, Spyros & Zhang, Mingyang & Tian, Wuliu, 2023. "An interpretable knowledge-based decision support method for ship collision avoidance using AIS data," Reliability Engineering and System Safety, Elsevier, vol. 230(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0259694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.