IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v11y2024i1d10.1057_s41599-023-02577-y.html
   My bibliography  Save this article

Daily rhythm of urban space usage: insights from the nexus of urban functions and human mobility

Author

Listed:
  • Fangye Du

    (University of Electronic Science and Technology of China)

  • Jiaoe Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Liang Mao

    (Department of Geography, University of Florida)

  • Jian Kang

    (University of Electronic Science and Technology of China)

Abstract

As urban density increases, it becomes increasingly common for multiple functions to coexist within the same space, intensifying the complexity of human activity dynamics. However, traditional urban zoning, which relies on the spatial distribution of urban functions and human activities, focuses on the spatial heterogeneity of urban space and fails to capture the temporal dynamics of urban space usage. This paper aims to investigate the daily rhythm of urban space usage and illustrate how the distribution and combination of urban functions affect the daily usage rhythm. Taking Beijing in China as a case, we first identified the daily rhythm of urban space usage with the k-means algorithm and zoned urban space accordingly. Subsequently, multinomial logistic (MNL) models were employed to elucidate how the distribution and combination of urban functions influenced these daily usage patterns. Furthermore, a validation study in typical zones was conducted. The results revealed the existence of a distinct daily rhythm in urban space usage, resulting in the classification of urban space into seven distinct zones: high equilibrium, low equilibrium, diurnal, nocturnal, morning, evening, and noon-type zones. Also, we found that this daily usage rhythm is closely intertwined with the distribution and coexistence of urban functions. Our findings could provide valuable insights for the enhancement of various intricate aspects within urban decision-making processes, including urban planning, transportation management, and more, at a fine-grained scale.

Suggested Citation

  • Fangye Du & Jiaoe Wang & Liang Mao & Jian Kang, 2024. "Daily rhythm of urban space usage: insights from the nexus of urban functions and human mobility," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-023-02577-y
    DOI: 10.1057/s41599-023-02577-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-023-02577-y
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-023-02577-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mi Diao & Yi Zhu & Joseph Ferreira Jr & Carlo Ratti, 2016. "Inferring individual daily activities from mobile phone traces: A Boston example," Environment and Planning B, , vol. 43(5), pages 920-940, September.
    2. Jie Huang & David Levinson & Jiaoe Wang & Zi-jia Wang, 2018. "Tracking job and housing dynamics with smartcard data," Working Papers 2018-01, University of Minnesota: Nexus Research Group.
    3. Thomas Louail & Maxime Lenormand & Miguel Picornell & Oliva García Cantú & Ricardo Herranz & Enrique Frias-Martinez & José J. Ramasco & Marc Barthelemy, 2015. "Uncovering the spatial structure of mobility networks," Nature Communications, Nature, vol. 6(1), pages 1-8, May.
    4. repec:nas:journl:v:115:y:2018:p:12710-12715 is not listed on IDEAS
    5. Peter Widhalm & Yingxiang Yang & Michael Ulm & Shounak Athavale & Marta González, 2015. "Discovering urban activity patterns in cell phone data," Transportation, Springer, vol. 42(4), pages 597-623, July.
    6. Yang Xu & Shih-Lung Shaw & Ziliang Zhao & Ling Yin & Feng Lu & Jie Chen & Zhixiang Fang & Qingquan Li, 2016. "Another Tale of Two Cities: Understanding Human Activity Space Using Actively Tracked Cellphone Location Data," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 106(2), pages 489-502, March.
    7. Marta C. González & César A. Hidalgo & Albert-László Barabási, 2009. "Understanding individual human mobility patterns," Nature, Nature, vol. 458(7235), pages 238-238, March.
    8. Zuoxian Gan & Min Yang & Tao Feng & Harry Timmermans, 2020. "Understanding urban mobility patterns from a spatiotemporal perspective: daily ridership profiles of metro stations," Transportation, Springer, vol. 47(1), pages 315-336, February.
    9. Ron Martin & Peter Sunley, 1996. "Paul Krugman's Geographical Economics and Its Implications for Regional Development Theory: A Critical Assessment," Economic Geography, Taylor & Francis Journals, vol. 72(3), pages 259-292, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Lun & Gao, Xuesong & Zhuang, Jiexin & Wu, Wen & Yang, Bo & Cheng, Wei & Xiao, Pengfei & Yao, Xingzhu & Deng, Ouping, 2020. "Evaluating the lifestyle impact of China’s rural housing land consolidation with locational big data: A study of Chengdu," Land Use Policy, Elsevier, vol. 96(C).
    2. Zhang, Shanqi & Yang, Yu & Zhen, Feng & Lobsang, Tashi & Li, Zhixuan, 2021. "Understanding the travel behaviors and activity patterns of the vulnerable population using smart card data: An activity space-based approach," Journal of Transport Geography, Elsevier, vol. 90(C).
    3. Yaxi Gong & Xiang Ji & Yuan Zhang & Shanshan Cheng, 2023. "Spatial Vitality Evaluation and Coupling Regulation Mechanism of a Complex Ecosystem in Lixiahe Plain Based on Multi-Source Data," Sustainability, MDPI, vol. 15(3), pages 1-32, January.
    4. Duan, Zhengyu & Zhao, Haoran & Li, Zhenming, 2023. "Non-linear effects of built environment and socio-demographics on activity space," Journal of Transport Geography, Elsevier, vol. 111(C).
    5. Elisa Frutos-Bernal & Ángel Martín del Rey & Irene Mariñas-Collado & María Teresa Santos-Martín, 2022. "An Analysis of Travel Patterns in Barcelona Metro Using Tucker3 Decomposition," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
    6. Li, Ze-Tao & Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2023. "Exploring the topological characteristics of urban trip networks based on taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    7. Claudio Gariazzo & Armando Pelliccioni & Maria Paola Bogliolo, 2019. "Spatiotemporal Analysis of Urban Mobility Using Aggregate Mobile Phone Derived Presence and Demographic Data: A Case Study in the City of Rome, Italy," Data, MDPI, vol. 4(1), pages 1-25, January.
    8. Yang, Xiping & Fang, Zhixiang & Xu, Yang & Yin, Ling & Li, Junyi & Lu, Shiwei, 2019. "Spatial heterogeneity in spatial interaction of human movements—Insights from large-scale mobile positioning data," Journal of Transport Geography, Elsevier, vol. 78(C), pages 29-40.
    9. Zhou, Yang & Thill, Jean-Claude & Xu, Yang & Fang, Zhixiang, 2021. "Variability in individual home-work activity patterns," Journal of Transport Geography, Elsevier, vol. 90(C).
    10. Yang, Xiong & Zhuge, Chengxiang & Shao, Chunfu & Huang, Yuantan & Hayse Chiwing G. Tang, Justin & Sun, Mingdong & Wang, Pinxi & Wang, Shiqi, 2022. "Characterizing mobility patterns of private electric vehicle users with trajectory data," Applied Energy, Elsevier, vol. 321(C).
    11. Huang, Zhiren & Wang, Pu & Zhang, Fan & Gao, Jianxi & Schich, Maximilian, 2018. "A mobility network approach to identify and anticipate large crowd gatherings," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 147-170.
    12. Gang Zhong & Tingting Yin & Jian Zhang & Shanglu He & Bin Ran, 2019. "Characteristics analysis for travel behavior of transportation hub passengers using mobile phone data," Transportation, Springer, vol. 46(5), pages 1713-1736, October.
    13. Zhang, Xiaohu & Xu, Yang & Tu, Wei & Ratti, Carlo, 2018. "Do different datasets tell the same story about urban mobility — A comparative study of public transit and taxi usage," Journal of Transport Geography, Elsevier, vol. 70(C), pages 78-90.
    14. Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2022. "Revealing mobility pattern of taxi movements with its travel trajectory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    15. Xia Zhao & Mengying Cui & David Levinson, 2023. "Exploring temporal variability in travel patterns on public transit using big smart card data," Environment and Planning B, , vol. 50(1), pages 198-217, January.
    16. Jungmin Kim & Juyong Park & Wonjae Lee, 2018. "Why do people move? Enhancing human mobility prediction using local functions based on public records and SNS data," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-29, February.
    17. Mohammadi, Neda & Taylor, John E., 2017. "Urban infrastructure-mobility energy flux," Energy, Elsevier, vol. 140(P1), pages 716-728.
    18. Junwei Ma & Bo Li & Ali Mostafavi, 2024. "Characterizing urban lifestyle signatures using motif properties in network of places," Environment and Planning B, , vol. 51(4), pages 889-903, May.
    19. Mariem Fekih & Tom Bellemans & Zbigniew Smoreda & Patrick Bonnel & Angelo Furno & Stéphane Galland, 2021. "A data-driven approach for origin–destination matrix construction from cellular network signalling data: a case study of Lyon region (France)," Transportation, Springer, vol. 48(4), pages 1671-1702, August.
    20. Chen, Wendong & Chen, Xuewu & Cheng, Long & Liu, Xize & Chen, Jingxu, 2022. "Delineating borders of urban activity zones with free-floating bike sharing spatial interaction network," Journal of Transport Geography, Elsevier, vol. 104(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-023-02577-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.