IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v78y2019icp29-40.html
   My bibliography  Save this article

Spatial heterogeneity in spatial interaction of human movements—Insights from large-scale mobile positioning data

Author

Listed:
  • Yang, Xiping
  • Fang, Zhixiang
  • Xu, Yang
  • Yin, Ling
  • Li, Junyi
  • Lu, Shiwei

Abstract

Distance decay is a primary characteristic of spatial interaction in human movements, and it has been incorporated into many spatial interaction models. Existing approaches mainly rely on travel survey datasets to fit the frictional coefficient of distance decay. However, limited sample size and spatiotemporal resolution make the determination of the spatial interaction characteristic from a comprehensive view difficult. Recently, this situation has been reversed due to emerging large human trajectory datasets, which have stimulated a body of literatures to re-examine the traditional issue of distance decay. However, these studies only focused on distance decay from a global perspective and neglected the spatial non-stationarity of spatial interaction. This study aims to reveal the spatial heterogeneity of distance decay of human movements extracted from massive mobile phone location data from Shenzhen, China. The power law function is utilized to fit the distance decay coefficients for inflow and outflow of each spatial analysis unit. Then, geographically weighted regression is employed to quantify the relationship between distance decay coefficients and land use distribution and between distance decay coefficients and traffic facilities. Results show that considerable spatial non-stationarity appears in the distance decay of spatial interaction, and the regression coefficients indicate the spatial variations of the influence of land use and traffic facilities on distance decay across urban space. These findings provide an in-depth insight into the distance decay characteristics of human movements in a more microcosmic space.

Suggested Citation

  • Yang, Xiping & Fang, Zhixiang & Xu, Yang & Yin, Ling & Li, Junyi & Lu, Shiwei, 2019. "Spatial heterogeneity in spatial interaction of human movements—Insights from large-scale mobile positioning data," Journal of Transport Geography, Elsevier, vol. 78(C), pages 29-40.
  • Handle: RePEc:eee:jotrge:v:78:y:2019:i:c:p:29-40
    DOI: 10.1016/j.jtrangeo.2019.05.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692318309219
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2019.05.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John R. Roy & Jean-Claude Thill, 2004. "Spatial interaction modelling," Advances in Spatial Science, in: Raymond J. G. M. Florax & David A. Plane (ed.), Fifty Years of Regional Science, pages 339-361, Springer.
    2. Kang, Chaogui & Ma, Xiujun & Tong, Daoqin & Liu, Yu, 2012. "Intra-urban human mobility patterns: An urban morphology perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1702-1717.
    3. Halás, Marián & Klapka, Pavel & Kladivo, Petr, 2014. "Distance-decay functions for daily travel-to-work flows," Journal of Transport Geography, Elsevier, vol. 35(C), pages 107-119.
    4. Jacob J de Vries & Peter Nijkamp & Piet Rietveld, 2009. "Exponential or Power Distance-Decay for Commuting? An Alternative Specification," Environment and Planning A, , vol. 41(2), pages 461-480, February.
    5. Yu Liu & Chaogui Kang & Song Gao & Yu Xiao & Yuan Tian, 2012. "Understanding intra-urban trip patterns from taxi trajectory data," Journal of Geographical Systems, Springer, vol. 14(4), pages 463-483, October.
    6. Yu Liu & Xi Liu & Song Gao & Li Gong & Chaogui Kang & Ye Zhi & Guanghua Chi & Li Shi, 2015. "Social Sensing: A New Approach to Understanding Our Socioeconomic Environments," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 105(3), pages 512-530, May.
    7. Chen, Yanguang, 2015. "The distance-decay function of geographical gravity model: Power law or exponential law?," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 174-189.
    8. Maryam Kordi & A. Stewart Fotheringham, 2016. "Spatially Weighted Interaction Models (SWIM)," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 106(5), pages 990-1012, September.
    9. David L. Huff, 1963. "A Probabilistic Analysis of Shopping Center Trade Areas," Land Economics, University of Wisconsin Press, vol. 39(1), pages 81-90.
    10. Thomas Louail & Maxime Lenormand & Miguel Picornell & Oliva García Cantú & Ricardo Herranz & Enrique Frias-Martinez & José J. Ramasco & Marc Barthelemy, 2015. "Uncovering the spatial structure of mobility networks," Nature Communications, Nature, vol. 6(1), pages 1-8, May.
    11. Ma, Xiaolei & Liu, Congcong & Wen, Huimin & Wang, Yunpeng & Wu, Yao-Jan, 2017. "Understanding commuting patterns using transit smart card data," Journal of Transport Geography, Elsevier, vol. 58(C), pages 135-145.
    12. Yang, Zhuo & Franz, Mark L. & Zhu, Shanjiang & Mahmoudi, Jina & Nasri, Arefeh & Zhang, Lei, 2018. "Analysis of Washington, DC taxi demand using GPS and land-use data," Journal of Transport Geography, Elsevier, vol. 66(C), pages 35-44.
    13. Martínez, L. Miguel & Viegas, José Manuel, 2013. "A new approach to modelling distance-decay functions for accessibility assessment in transport studies," Journal of Transport Geography, Elsevier, vol. 26(C), pages 87-96.
    14. Tu, Wei & Cao, Rui & Yue, Yang & Zhou, Baoding & Li, Qiuping & Li, Qingquan, 2018. "Spatial variations in urban public ridership derived from GPS trajectories and smart card data," Journal of Transport Geography, Elsevier, vol. 69(C), pages 45-57.
    15. Yu Liu & Zhengwei Sui & Chaogui Kang & Yong Gao, 2014. "Uncovering Patterns of Inter-Urban Trip and Spatial Interaction from Social Media Check-In Data," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-11, January.
    16. Yang Xu & Shih-Lung Shaw & Ziliang Zhao & Ling Yin & Zhixiang Fang & Qingquan Li, 2015. "Understanding aggregate human mobility patterns using passive mobile phone location data: a home-based approach," Transportation, Springer, vol. 42(4), pages 625-646, July.
    17. Yang Xu & Shih-Lung Shaw & Ziliang Zhao & Ling Yin & Feng Lu & Jie Chen & Zhixiang Fang & Qingquan Li, 2016. "Another Tale of Two Cities: Understanding Human Activity Space Using Actively Tracked Cellphone Location Data," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 106(2), pages 489-502, March.
    18. Xiping Yang & Zhixiang Fang & Ling Yin & Junyi Li & Yang Zhou & Shiwei Lu, 2018. "Understanding the Spatial Structure of Urban Commuting Using Mobile Phone Location Data: A Case Study of Shenzhen, China," Sustainability, MDPI, vol. 10(5), pages 1-14, May.
    19. John R. Roy, 2004. "Spatial Interaction Modelling," Advances in Spatial Science, Springer, number 978-3-540-24807-1, Fall.
    20. Liu, Xi & Gong, Li & Gong, Yongxi & Liu, Yu, 2015. "Revealing travel patterns and city structure with taxi trip data," Journal of Transport Geography, Elsevier, vol. 43(C), pages 78-90.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Šveda, Martin & Madajová, Michala Sládeková, 2023. "Estimating distance decay of intra-urban trips using mobile phone data: The case of Bratislava, Slovakia," Journal of Transport Geography, Elsevier, vol. 107(C).
    2. Deng, Yiling & Zhao, Pengjun, 2022. "The impact of new metro on travel behavior: Panel analysis using mobile phone data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 46-57.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Šveda, Martin & Madajová, Michala Sládeková, 2023. "Estimating distance decay of intra-urban trips using mobile phone data: The case of Bratislava, Slovakia," Journal of Transport Geography, Elsevier, vol. 107(C).
    2. Xiping Yang & Zhixiang Fang & Ling Yin & Junyi Li & Yang Zhou & Shiwei Lu, 2018. "Understanding the Spatial Structure of Urban Commuting Using Mobile Phone Location Data: A Case Study of Shenzhen, China," Sustainability, MDPI, vol. 10(5), pages 1-14, May.
    3. Zhang, Xiaohu & Xu, Yang & Tu, Wei & Ratti, Carlo, 2018. "Do different datasets tell the same story about urban mobility — A comparative study of public transit and taxi usage," Journal of Transport Geography, Elsevier, vol. 70(C), pages 78-90.
    4. Oshan, Taylor M., 2020. "The spatial structure debate in spatial interaction modeling: 50 years on," OSF Preprints 42vxn, Center for Open Science.
    5. Jing Yang & Disheng Yi & Jingjing Liu & Yusi Liu & Jing Zhang, 2019. "Spatiotemporal Change Characteristics of Nodes’ Heterogeneity in the Directed and Weighted Spatial Interaction Networks: Case Study within the Sixth Ring Road of Beijing, China," Sustainability, MDPI, vol. 11(22), pages 1-15, November.
    6. Mengyao Ren & Yaoyu Lin & Meihan Jin & Zhongyuan Duan & Yongxi Gong & Yu Liu, 2020. "Examining the effect of land-use function complementarity on intra-urban spatial interactions using metro smart card records," Transportation, Springer, vol. 47(4), pages 1607-1629, August.
    7. Oshan, Taylor M., 2022. "Spatial Interaction Modeling," OSF Preprints m3ah8, Center for Open Science.
    8. Vladimir Marianov & H. A. Eiselt, 2016. "On agglomeration in competitive location models," Annals of Operations Research, Springer, vol. 246(1), pages 31-55, November.
    9. Tang, Jinjun & Zhang, Shen & Zhang, Wenhui & Liu, Fang & Zhang, Weibin & Wang, Yinhai, 2016. "Statistical properties of urban mobility from location-based travel networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 694-707.
    10. Zhou, Yang & Thill, Jean-Claude & Xu, Yang & Fang, Zhixiang, 2021. "Variability in individual home-work activity patterns," Journal of Transport Geography, Elsevier, vol. 90(C).
    11. Zhao, Pengxiang & Kwan, Mei-Po & Qin, Kun, 2017. "Uncovering the spatiotemporal patterns of CO2 emissions by taxis based on Individuals' daily travel," Journal of Transport Geography, Elsevier, vol. 62(C), pages 122-135.
    12. He, Zhengbing, 2020. "Spatial-temporal fractal of urban agglomeration travel demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    13. Tang, Jinjun & Liu, Fang & Wang, Yinhai & Wang, Hua, 2015. "Uncovering urban human mobility from large scale taxi GPS data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 140-153.
    14. Shili Chen & Haiyan Tao & Xuliang Li & Li Zhuo, 2018. "Detecting urban commercial patterns using a latent semantic information model: A case study of spatial-temporal evolution in Guangzhou, China," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-20, August.
    15. M. Alonso & M. Beamonte & P. Gargallo & M. Salvador, 2014. "Labour and residential accessibility: a Bayesian analysis based on Poisson gravity models with spatial effects," Journal of Geographical Systems, Springer, vol. 16(4), pages 409-439, October.
    16. Lenormand, Maxime & Bassolas, Aleix & Ramasco, José J., 2016. "Systematic comparison of trip distribution laws and models," Journal of Transport Geography, Elsevier, vol. 51(C), pages 158-169.
    17. Mepparambath, Rakhi Manohar & Soh, Yong Sheng & Jayaraman, Vasundhara & Tan, Hong En & Ramli, Muhamad Azfar, 2023. "A novel modelling approach of integrated taxi and transit mode and route choice using city-scale emerging mobility data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    18. Zhang, Shanqi & Yang, Yu & Zhen, Feng & Lobsang, Tashi & Li, Zhixuan, 2021. "Understanding the travel behaviors and activity patterns of the vulnerable population using smart card data: An activity space-based approach," Journal of Transport Geography, Elsevier, vol. 90(C).
    19. Fangye Du & Jiaoe Wang & Yu Liu & Zihao Zhou & Haitao Jin, 2022. "Equity in Health-Seeking Behavior of Groups Using Different Transportations," IJERPH, MDPI, vol. 19(5), pages 1-16, February.
    20. Cheng Jin & Jing Xu, 2020. "Using user-generated content data to analyze tourist mobility between hotels and attractions in cities," Environment and Planning B, , vol. 47(5), pages 826-840, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:78:y:2019:i:c:p:29-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.