IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v123y2025ics0966692324002904.html
   My bibliography  Save this article

Assessing urban-scale spatiotemporal heterogeneous metro station coverage using multi-source mobility data

Author

Listed:
  • Zhang, Guozheng
  • Wang, Dianhai
  • Chen, Mengwei
  • Zeng, Jiaqi
  • Cai, Zhengyi

Abstract

Assessing the coverage of metro stations is crucial for evaluating and guiding metro construction. Existing methods mainly rely on surveys to obtain the coverage radii by fitting the first-mile distance distribution of metro passengers, which is costly and time-consuming to capture the spatiotemporal heterogeneity at the urban scale. Daily generated multi-source mobility data offers the possibility of a broad and low-cost assessment. This study proposes a framework to assess the coverage radius of metro stations using metro smart card data and Baidu population heatmap data. First, we build a nested logit model to model travelers' mode choice and station selection behaviors, considering both the competitiveness of the metro over other modes and travelers' sensitivity to first-mile distance. We then establish the relationship between choice probability and metro station inflows, calibrating the parameters through a genetic algorithm-based bi-objective optimization. Finally, we propose a novel metro station coverage assessment method using a distance-decay function that describes the cumulative mode choice proportions. An empirical analysis is conducted using Hangzhou, a sizeable monocentric city in China. The results reveal significant tidal patterns in travel behavior parameters. During the morning peak, suburban travelers rely more on the metro, whereas evening peak reliance is more pronounced among urban center travelers. This aligns with Hangzhou's commuting patterns. Moreover, significant differences occur in attraction patterns between downtown and suburban stations. Suburban metro stations exhibit larger coverage radii due to the lack of convenient alternative transport modes, a result that existing methods fail to capture. This evaluation framework can be extended to other cities, offering valuable insights for enhancing metro services.

Suggested Citation

  • Zhang, Guozheng & Wang, Dianhai & Chen, Mengwei & Zeng, Jiaqi & Cai, Zhengyi, 2025. "Assessing urban-scale spatiotemporal heterogeneous metro station coverage using multi-source mobility data," Journal of Transport Geography, Elsevier, vol. 123(C).
  • Handle: RePEc:eee:jotrge:v:123:y:2025:i:c:s0966692324002904
    DOI: 10.1016/j.jtrangeo.2024.104081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692324002904
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2024.104081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Halás, Marián & Klapka, Pavel & Kladivo, Petr, 2014. "Distance-decay functions for daily travel-to-work flows," Journal of Transport Geography, Elsevier, vol. 35(C), pages 107-119.
    2. Vincent Chakour & Naveen Eluru, 2014. "Analyzing commuter train user behavior: a decision framework for access mode and station choice," Transportation, Springer, vol. 41(1), pages 211-228, January.
    3. Ahmed El-Geneidy & Michael Grimsrud & Rania Wasfi & Paul Tétreault & Julien Surprenant-Legault, 2014. "New evidence on walking distances to transit stops: identifying redundancies and gaps using variable service areas," Transportation, Springer, vol. 41(1), pages 193-210, January.
    4. Wang, Jueyu & Cao, Xinyu, 2017. "Exploring built environment correlates of walking distance of transit egress in the Twin Cities," Journal of Transport Geography, Elsevier, vol. 64(C), pages 132-138.
    5. Altieri, Marcelo & Silva, Cecília & Terabe, Shintaro, 2020. "Give public transit a chance: A comparative analysis of competitive travel time in public transit modal share," Journal of Transport Geography, Elsevier, vol. 87(C).
    6. Shields, Michael D. & Zhang, Jiaxin, 2016. "The generalization of Latin hypercube sampling," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 96-108.
    7. Xia Li & Zhenyu Liu & Xinwei Ma, 2022. "Measuring Access and Egress Distance and Catchment Area of Multiple Feeding Modes for Metro Transferring Using Survey Data," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    8. Yu, Lijie & Cui, Mengying, 2023. "How subway network affects transit accessibility and equity: A case study of Xi'an metropolitan area," Journal of Transport Geography, Elsevier, vol. 108(C).
    9. Li, Wenxiang & Chen, Shawen & Dong, Jieshuang & Wu, Jingxian, 2021. "Exploring the spatial variations of transfer distances between dockless bike-sharing systems and metros," Journal of Transport Geography, Elsevier, vol. 92(C).
    10. Lu, Ying & Prato, Carlo G. & Corcoran, Jonathan, 2021. "Disentangling the behavioural side of the first and last mile problem: the role of modality style and the built environment," Journal of Transport Geography, Elsevier, vol. 91(C).
    11. Yang, Xiping & Fang, Zhixiang & Xu, Yang & Yin, Ling & Li, Junyi & Lu, Shiwei, 2019. "Spatial heterogeneity in spatial interaction of human movements—Insights from large-scale mobile positioning data," Journal of Transport Geography, Elsevier, vol. 78(C), pages 29-40.
    12. Jiang, Yang & Christopher Zegras, P. & Mehndiratta, Shomik, 2012. "Walk the line: station context, corridor type and bus rapid transit walk access in Jinan, China," Journal of Transport Geography, Elsevier, vol. 20(1), pages 1-14.
    13. Tao, Tao & Wang, Jueyu & Cao, Xinyu, 2020. "Exploring the non-linear associations between spatial attributes and walking distance to transit," Journal of Transport Geography, Elsevier, vol. 82(C).
    14. Lu, Xiao-Shan & Liu, Tian-Liang & Huang, Hai-Jun, 2015. "Pricing and mode choice based on nested logit model with trip-chain costs," Transport Policy, Elsevier, vol. 44(C), pages 76-88.
    15. Li, Aoyong & Huang, Yizhe & Axhausen, Kay W., 2020. "An approach to imputing destination activities for inclusion in measures of bicycle accessibility," Journal of Transport Geography, Elsevier, vol. 82(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pueboobpaphan, Rattaphol & Pueboobpaphan, Suthatip & Sukhotra, Suthasinee, 2022. "Acceptable walking distance to transit stations in Bangkok, Thailand: Application of a stated preference technique," Journal of Transport Geography, Elsevier, vol. 99(C).
    2. Gan, Zuoxian & Yang, Min & Zeng, Qingcheng & Timmermans, Harry J.P., 2021. "Associations between built environment, perceived walkability/bikeability and metro transfer patterns," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 171-187.
    3. Wu, Wenjie & Cao, Mengqiu & Wang, Fenglong & Wang, Ruoyu, 2024. "Nonlinear influences of landscape configurations and walking access to transit services on travel satisfaction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 189(C).
    4. Yang, Jiawen & Su, Pinren & Cao, Jason, 2020. "On the importance of Shenzhen metro transit to land development and threshold effect," Transport Policy, Elsevier, vol. 99(C), pages 1-11.
    5. Panyu Tang & Mahdi Aghaabbasi & Mujahid Ali & Amin Jan & Abdeliazim Mustafa Mohamed & Abdullah Mohamed, 2022. "How Sustainable Is People’s Travel to Reach Public Transit Stations to Go to Work? A Machine Learning Approach to Reveal Complex Relationships," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    6. Tao, Tao & Wang, Jueyu & Cao, Xinyu, 2020. "Exploring the non-linear associations between spatial attributes and walking distance to transit," Journal of Transport Geography, Elsevier, vol. 82(C).
    7. He, Zhangyuan & Zhao, Pengjun & Xiao, Zuopeng & Huang, Xin & Li, Zhaoxiang & Kang, Tingting, 2024. "Exploring the distance decay in port hinterlands under port regionalization using truck GPS data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    8. Zhan, Zilin & Guo, Yuanyuan & Noland, Robert B. & He, Sylvia Y. & Wang, Yacan, 2023. "Analysis of links between dockless bikeshare and metro trips in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    9. Bi, Hui & Gao, Hui & Li, Aoyong & Ye, Zhirui, 2024. "Using topic modeling to unravel the nuanced effects of built environment on bicycle-metro integrated usage," Transportation Research Part A: Policy and Practice, Elsevier, vol. 185(C).
    10. Xiang Li & Qipeng Yan & Yafeng Ma & Chen Luo, 2023. "Spatially Varying Impacts of Built Environment on Transfer Ridership of Metro and Bus Systems," Sustainability, MDPI, vol. 15(10), pages 1-24, May.
    11. Ji, Shujuan & Wang, Xin & Lyu, Tao & Liu, Xiaojie & Wang, Yuanqing & Heinen, Eva & Sun, Zhenwei, 2022. "Understanding cycling distance according to the prediction of the XGBoost and the interpretation of SHAP: A non-linear and interaction effect analysis," Journal of Transport Geography, Elsevier, vol. 103(C).
    12. Givoni, Moshe & Rietveld, Piet, 2014. "Do cities deserve more railway stations? The choice of a departure railway station in a multiple-station region," Journal of Transport Geography, Elsevier, vol. 36(C), pages 89-97.
    13. Gupta, Akshay & Bivina, G.R. & Parida, Manoranjan, 2022. "Does neighborhood design matter for walk access to metro stations? An integrated SEM-Hybrid discrete mode choice approach," Transport Policy, Elsevier, vol. 121(C), pages 61-77.
    14. Sangeetha Ann & Meilan Jiang & Toshiyuki Yamamoto, 2019. "Influence Area of Transit-Oriented Development for Individual Delhi Metro Stations Considering Multimodal Accessibility," Sustainability, MDPI, vol. 11(16), pages 1-23, August.
    15. Sogbe, Eugene & Susilawati, Susilawati & Pin, Tan Chee, 2024. "First-mile and last-mile externalities: Perspectives from a developing country," Journal of Transport Geography, Elsevier, vol. 121(C).
    16. Zhou, Xingang & Zhao, Zhouye & Fu, Wenyan & Huang, Zhengdong & Yao, Yao & Huang, Yongqiao & Zhang, Yongping, 2024. "The impact of heterogeneous accessibility to metro stations on land use changes in a bike-sharing context," Journal of Transport Geography, Elsevier, vol. 121(C).
    17. O'Connor, David & Caulfield, Brian, 2018. "Level of service and the transit neighbourhood - Observations from Dublin city and suburbs," Research in Transportation Economics, Elsevier, vol. 69(C), pages 59-67.
    18. Zou, Guojian & Lai, Ziliang & Li, Ye & Liu, Xinghua & Li, Wenxiang, 2022. "Exploring the nonlinear impact of air pollution on housing prices: A machine learning approach," Economics of Transportation, Elsevier, vol. 31(C).
    19. Sangeetha Ann & Meilan Jiang & Ghasak Ibrahim Mothafer & Toshiyuki Yamamoto, 2019. "Examination on the Influence Area of Transit-Oriented Development: Considering Multimodal Accessibility in New Delhi, India," Sustainability, MDPI, vol. 11(9), pages 1-20, May.
    20. Mulley, Corinne & Ho, Chinh & Ho, Loan & Hensher, David & Rose, John, 2018. "Will bus travellers walk further for a more frequent service? An international study using a stated preference approach," Transport Policy, Elsevier, vol. 69(C), pages 88-97.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:123:y:2025:i:c:s0966692324002904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.