IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v191y2025ics0960077924014681.html
   My bibliography  Save this article

Unraveling metro mobility patterns in China: A multi-city comparative study using travel motifs and entropy analysis

Author

Listed:
  • Chang, Shixin
  • Gao, Liang
  • Zhang, Chaoyang
  • Yu, Ting
  • Han, Xiao
  • Si, Bingfeng
  • Mendes, Jose F.F.

Abstract

Human mobility varies significantly across temporal and spatial scales and exhibits distinct characteristics. However, precise methods and metrics for measuring human mobility are still lacking and the underlying mechanisms across different spatiotemporal scales and social groups remain unexplored. To uncover the regularity of urban travel patterns, we propose statistical methods focused on different types of entropy values. We introduce the concepts of mobility chains and travel motifs to provide diversified perspectives to observing users’ travel behaviors, choices, preferences and other characteristics. Our findings reveal that users with the same travel motifs share similar proportions in each city and follow consistent travel regularities within their motif categories. Given the importance of understanding human mobility, we emphasize the need for quantitative models that account for the statistical characteristics of individual human trajectories. To address this, we introduce the Preferential Return (PR) model, which explains the observed scaling laws and analytically simulates users’ travel behaviors. Our model and associated rules establish an underlying mechanism at the individual level, capable of explaining a variety of human mobility behaviors with different travel characteristics. These analyses and explanations have significant applications in reproducing human movement patterns. Our study provides a scientific basis for understanding and optimizing urban traffic management, enhancing public service efficiency, and promoting sustainable urban development. We believe these insights will contribute to the harmonious progress of society.

Suggested Citation

  • Chang, Shixin & Gao, Liang & Zhang, Chaoyang & Yu, Ting & Han, Xiao & Si, Bingfeng & Mendes, Jose F.F., 2025. "Unraveling metro mobility patterns in China: A multi-city comparative study using travel motifs and entropy analysis," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924014681
    DOI: 10.1016/j.chaos.2024.115916
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924014681
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115916?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yong, Juan & Zheng, Linjiang & Mao, Xiaowen & Tang, Xi & Gao, Ang & Liu, Weining, 2021. "Mining metro commuting mobility patterns using massive smart card data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    2. Luca Pappalardo & Filippo Simini & Salvatore Rinzivillo & Dino Pedreschi & Fosca Giannotti & Albert-László Barabási, 2015. "Returners and explorers dichotomy in human mobility," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    3. Su, Rongxiang & McBride, Elizabeth C. & Goulias, Konstadinos G., 2021. "Unveiling daily activity pattern differences between telecommuters and commuters using human mobility motifs and sequence analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 106-132.
    4. Xiao-Yong Yan & Wen-Xu Wang & Zi-You Gao & Ying-Cheng Lai, 2017. "Universal model of individual and population mobility on diverse spatial scales," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    5. Kim, Junghwan & Kwan, Mei-Po, 2021. "The impact of the COVID-19 pandemic on people's mobility: A longitudinal study of the U.S. from March to September of 2020," Journal of Transport Geography, Elsevier, vol. 93(C).
    6. Mariem Fekih & Tom Bellemans & Zbigniew Smoreda & Patrick Bonnel & Angelo Furno & Stéphane Galland, 2021. "A data-driven approach for origin–destination matrix construction from cellular network signalling data: a case study of Lyon region (France)," Transportation, Springer, vol. 48(4), pages 1671-1702, August.
    7. Shi, Linchang & Yang, Jiayu & Lee, Jaeyoung Jay & Bai, Jun & Ryu, Ingon & Choi, Keechoo, 2024. "Spatial-temporal identification of commuters using trip chain data from non-motorized mode incentive program and public transportation," Journal of Transport Geography, Elsevier, vol. 117(C).
    8. Vanni, Fabio, 2024. "A visit generation process for human mobility random graphs with location-specific latent-variables: From land use to travel demand," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    9. Thomas Louail & Maxime Lenormand & Miguel Picornell & Oliva García Cantú & Ricardo Herranz & Enrique Frias-Martinez & José J. Ramasco & Marc Barthelemy, 2015. "Uncovering the spatial structure of mobility networks," Nature Communications, Nature, vol. 6(1), pages 1-8, May.
    10. Shi, Shuyang & Wang, Lin & Wang, Xiaofan, 2022. "Uncovering the spatiotemporal motif patterns in urban mobility networks by non-negative tensor decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    11. Zuoxian Gan & Min Yang & Tao Feng & Harry Timmermans, 2020. "Understanding urban mobility patterns from a spatiotemporal perspective: daily ridership profiles of metro stations," Transportation, Springer, vol. 47(1), pages 315-336, February.
    12. Jinzhou Cao & Qingquan Li & Wei Tu & Feilong Wang, 2019. "Characterizing preferred motif choices and distance impacts," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-17, April.
    13. Oded Cats, 2024. "Identifying human mobility patterns using smart card data," Transport Reviews, Taylor & Francis Journals, vol. 44(1), pages 213-243, January.
    14. Su, Rongxiang & Xiao, Jingyi & McBride, Elizabeth C. & Goulias, Konstadinos G., 2021. "Understanding senior's daily mobility patterns in California using human mobility motifs," Journal of Transport Geography, Elsevier, vol. 94(C).
    15. Laura Alessandretti & Ulf Aslak & Sune Lehmann, 2020. "The scales of human mobility," Nature, Nature, vol. 587(7834), pages 402-407, November.
    16. Ed Manley & Chen Zhong & Michael Batty, 2018. "Spatiotemporal variation in travel regularity through transit user profiling," Transportation, Springer, vol. 45(3), pages 703-732, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Shuyang & Wang, Lin & Wang, Xiaofan, 2022. "Uncovering the spatiotemporal motif patterns in urban mobility networks by non-negative tensor decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    2. Xingye Tan & Bo Huang & Michael Batty & Weiyu Li & Qi Ryan Wang & Yulun Zhou & Peng Gong, 2025. "The spatiotemporal scaling laws of urban population dynamics," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    3. Su, Rongxiang & Xiao, Jingyi & McBride, Elizabeth C. & Goulias, Konstadinos G., 2021. "Understanding senior's daily mobility patterns in California using human mobility motifs," Journal of Transport Geography, Elsevier, vol. 94(C).
    4. He, Yifan & Zhao, Chen & Zeng, An, 2022. "Ranking locations in a city via the collective home-work relations in human mobility data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    5. Xu, Paiheng & Yin, Likang & Yue, Zhongtao & Zhou, Tao, 2019. "On predictability of time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 345-351.
    6. Elisa Frutos-Bernal & Ángel Martín del Rey & Irene Mariñas-Collado & María Teresa Santos-Martín, 2022. "An Analysis of Travel Patterns in Barcelona Metro Using Tucker3 Decomposition," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
    7. Baudains, Peter & Kalatian, Arash & Choudhury, Charisma F. & Manley, Ed, 2024. "Social inequality and the changing patterns of travel in the pandemic and post-pandemic era," Journal of Transport Geography, Elsevier, vol. 118(C).
    8. Li, Ze-Tao & Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2023. "Exploring the topological characteristics of urban trip networks based on taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    9. Fangye Du & Jiaoe Wang & Liang Mao & Jian Kang, 2024. "Daily rhythm of urban space usage: insights from the nexus of urban functions and human mobility," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
    10. Dong, Bing & Liu, Yapan & Fontenot, Hannah & Ouf, Mohamed & Osman, Mohamed & Chong, Adrian & Qin, Shuxu & Salim, Flora & Xue, Hao & Yan, Da & Jin, Yuan & Han, Mengjie & Zhang, Xingxing & Azar, Elie & , 2021. "Occupant behavior modeling methods for resilient building design, operation and policy at urban scale: A review," Applied Energy, Elsevier, vol. 293(C).
    11. Chen, Ya & Li, Xue & Zhang, Richong & Huang, Zi-Gang & Lai, Ying-Cheng, 2020. "Instantaneous success and influence promotion in cyberspace — how do they occur?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    12. Clodomir Santana & Federico Botta & Hugo Barbosa & Filippo Privitera & Ronaldo Menezes & Riccardo Di Clemente, 2023. "COVID-19 is linked to changes in the time–space dimension of human mobility," Nature Human Behaviour, Nature, vol. 7(10), pages 1729-1739, October.
    13. Yang, Yitao & Jia, Bin & Yan, Xiao-Yong & Zhi, Danyue & Song, Dongdong & Chen, Yan & de Bok, Michiel & Tavasszy, Lóránt A. & Gao, Ziyou, 2023. "Uncovering and modeling the hierarchical organization of urban heavy truck flows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    14. Mohammadi, Neda & Taylor, John E., 2017. "Urban infrastructure-mobility energy flux," Energy, Elsevier, vol. 140(P1), pages 716-728.
    15. Chao Fan & Yang Yang & Ali Mostafavi, 2024. "Neural embeddings of urban big data reveal spatial structures in cities," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-15, December.
    16. Yang, Hu & Lv, Sirui & Guo, Bao & Dai, Jianjun & Wang, Pu, 2024. "Uncovering spatiotemporal human mobility patterns in urban agglomerations: A mobility field based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    17. Junwei Ma & Bo Li & Ali Mostafavi, 2024. "Characterizing urban lifestyle signatures using motif properties in network of places," Environment and Planning B, , vol. 51(4), pages 889-903, May.
    18. Jiao, Hongzan & Huang, Shibiao & Zhou, Yu, 2023. "Understanding the land use function of station areas based on spatiotemporal similarity in rail transit ridership: A case study in Shanghai, China," Journal of Transport Geography, Elsevier, vol. 109(C).
    19. Yu, Weijie & Wen, Haosong & Wang, Wei & Zhao, De & Hua, Xuedong, 2024. "On the calibration and improvement of human mobility models in intercity transportation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 653(C).
    20. Disheng Yi & Yusi Liu & Jiahui Qin & Jing Zhang, 2020. "Identifying Urban Traveling Hotspots Using an Interaction-Based Spatio-Temporal Data Field and Trajectory Data: A Case Study within the Sixth Ring Road of Beijing," Sustainability, MDPI, vol. 12(22), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924014681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.