IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v50y2023i1p198-217.html
   My bibliography  Save this article

Exploring temporal variability in travel patterns on public transit using big smart card data

Author

Listed:
  • Xia Zhao
  • Mengying Cui
  • David Levinson

Abstract

Passengers generate travel behaviours on public transit, whose variations deserve an exploration with an aim to guide daily-updated managements. In this study, we investigate temporal variability in travel patterns for over 3.3 million passengers across 120Â days who use public transit in Beijing. Temporal variability is characterized by a series of features in terms of space coverage, travel distance and travel frequency, based on which, passengers are clustered into two types, that is, commuters with daily travel routines, and non-commuters who do not. How, and to which extent, they change travel patterns over time are examined, with using approaches concerning multivariate regression and curve fitting. Results show that, (1) commuters are more likely to travel longer but cover less territory than non-commuters on weekdays, while the opposite patterns occur on weekends. The variation of day of week affects commuters less, compared to non-commuters, due to more fixed schedules, as expected; (2) travel distance and frequency are found to increase faster, more linearly, than space-coverage features, the last of which experience a progressive decreasing of marginal increases before reaching a plateau. The above findings facilitate transport practitioners to design sound management schemes for passengers in different categories.

Suggested Citation

  • Xia Zhao & Mengying Cui & David Levinson, 2023. "Exploring temporal variability in travel patterns on public transit using big smart card data," Environment and Planning B, , vol. 50(1), pages 198-217, January.
  • Handle: RePEc:sae:envirb:v:50:y:2023:i:1:p:198-217
    DOI: 10.1177/23998083221089662
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/23998083221089662
    Download Restriction: no

    File URL: https://libkey.io/10.1177/23998083221089662?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kandt, Jens & Leak, Alistair, 2019. "Examining inclusive mobility through smartcard data: What shall we make of senior citizens' declining bus patronage in the West Midlands?," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    2. Jie Huang & David Levinson & Jiaoe Wang & Jiangping Zhou & Zi-jia Wang, 2018. "Tracking job and housing dynamics with smartcard data," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 115(50), pages 12710-12715, December.
    3. Marta C. González & César A. Hidalgo & Albert-László Barabási, 2009. "Understanding individual human mobility patterns," Nature, Nature, vol. 458(7235), pages 238-238, March.
    4. Schönfelder, Stefan & Axhausen, Kay W., 2003. "Activity spaces: measures of social exclusion?," Transport Policy, Elsevier, vol. 10(4), pages 273-286, October.
    5. Jie Huang & David Levinson & Jiaoe Wang & Haitao Jin, 2019. "Job-worker spatial dynamics in Beijing: Insights from Smart Card Data," Working Papers 2019-01, University of Minnesota: Nexus Research Group.
    6. Yusak Susilo & Kay Axhausen, 2014. "Repetitions in individual daily activity–travel–location patterns: a study using the Herfindahl–Hirschman Index," Transportation, Springer, vol. 41(5), pages 995-1011, September.
    7. Charles Raux & Tai-Yu Ma & Eric Cornelis, 2016. "Variability in daily activity-travel patterns: the case of a one-week travel diary," Post-Print halshs-01389479, HAL.
    8. Jae Hyun Lee & Adam W. Davis & Seo Youn Yoon & Konstadinos G. Goulias, 2016. "Activity space estimation with longitudinal observations of social media data," Transportation, Springer, vol. 43(6), pages 955-977, November.
    9. Dimas B. E. Dharmowijoyo & Yusak O. Susilo & Anders Karlström, 2016. "Day-to-day variability in travellers’ activity-travel patterns in the Jakarta metropolitan area," Transportation, Springer, vol. 43(4), pages 601-621, July.
    10. Ma, Xiaolei & Liu, Congcong & Wen, Huimin & Wang, Yunpeng & Wu, Yao-Jan, 2017. "Understanding commuting patterns using transit smart card data," Journal of Transport Geography, Elsevier, vol. 58(C), pages 135-145.
    11. Dimas B. E. Dharmowijoyo & Yusak O. Susilo & Anders Karlström, 2018. "On complexity and variability of individuals’ discretionary activities," Transportation, Springer, vol. 45(1), pages 177-204, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Zhengyu & Zhao, Haoran & Li, Zhenming, 2023. "Non-linear effects of built environment and socio-demographics on activity space," Journal of Transport Geography, Elsevier, vol. 111(C).
    2. Chen, Wendong & Chen, Xuewu & Cheng, Long & Liu, Xize & Chen, Jingxu, 2022. "Delineating borders of urban activity zones with free-floating bike sharing spatial interaction network," Journal of Transport Geography, Elsevier, vol. 104(C).
    3. Fangye Du & Jiaoe Wang & Yu Liu & Zihao Zhou & Haitao Jin, 2022. "Equity in Health-Seeking Behavior of Groups Using Different Transportations," IJERPH, MDPI, vol. 19(5), pages 1-16, February.
    4. Rongxiang Su & Somayeh Dodge & Konstadinos G. Goulias, 2022. "Understanding the impact of temporal scale on human movement analytics," Journal of Geographical Systems, Springer, vol. 24(3), pages 353-388, July.
    5. Pieroni, Caio & Giannotti, Mariana & Alves, Bianca B. & Arbex, Renato, 2021. "Big data for big issues: Revealing travel patterns of low-income population based on smart card data mining in a global south unequal city," Journal of Transport Geography, Elsevier, vol. 96(C).
    6. Wang, Yihong & Correia, Gonçalo Homem de Almeida & de Romph, Erik & Timmermans, H.J.P., 2017. "Using metro smart card data to model location choice of after-work activities: An application to Shanghai," Journal of Transport Geography, Elsevier, vol. 63(C), pages 40-47.
    7. Chen, Wendong & Cheng, Long & Chen, Xuewu & Chen, Jingxu & Cao, Mengqiu, 2021. "Measuring accessibility to health care services for older bus passengers: A finer spatial resolution," Journal of Transport Geography, Elsevier, vol. 93(C).
    8. Ffion Carney, 2021. "Linking Loyalty Card Data to Public Transport Data to Explore Mobility and Social Exclusion in the Older Population," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    9. Fangye Du & Jiaoe Wang & Liang Mao & Jian Kang, 2024. "Daily rhythm of urban space usage: insights from the nexus of urban functions and human mobility," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
    10. Olle Järv & Kerli Müürisepp & Rein Ahas & Ben Derudder & Frank Witlox, 2015. "Ethnic differences in activity spaces as a characteristic of segregation: A study based on mobile phone usage in Tallinn, Estonia," Urban Studies, Urban Studies Journal Limited, vol. 52(14), pages 2680-2698, November.
    11. Zhou, Yang & Thill, Jean-Claude & Xu, Yang & Fang, Zhixiang, 2021. "Variability in individual home-work activity patterns," Journal of Transport Geography, Elsevier, vol. 90(C).
    12. Borkowski, Przemysław & Jażdżewska-Gutta, Magdalena & Szmelter-Jarosz, Agnieszka, 2021. "Lockdowned: Everyday mobility changes in response to COVID-19," Journal of Transport Geography, Elsevier, vol. 90(C).
    13. Yang, Xiong & Zhuge, Chengxiang & Shao, Chunfu & Huang, Yuantan & Hayse Chiwing G. Tang, Justin & Sun, Mingdong & Wang, Pinxi & Wang, Shiqi, 2022. "Characterizing mobility patterns of private electric vehicle users with trajectory data," Applied Energy, Elsevier, vol. 321(C).
    14. Liu, Chengxi & Susilo, Yusak O. & Dharmowijoyo, Dimas B.E., 2018. "Investigating intra-household interactions between individuals' time and space constraints," Journal of Transport Geography, Elsevier, vol. 73(C), pages 108-119.
    15. Dharmowijoyo, Dimas B.E. & Susilo, Yusak O. & Karlström, Anders, 2017. "Analysing the complexity of day-to-day individual activity-travel patterns using a multidimensional sequence alignment model: A case study in the Bandung Metropolitan Area, Indonesia," Journal of Transport Geography, Elsevier, vol. 64(C), pages 1-12.
    16. Nadav Shalit & Michael Fire & Eran Ben-Elia, 2023. "A supervised machine learning model for imputing missing boarding stops in smart card data," Public Transport, Springer, vol. 15(2), pages 287-319, June.
    17. Sakinah Fathrunnadi Shalihati & Andri Kurniawan & Sri Rum Giyarsih & Djaka Marwasta & Dimas Bayu Endrayana Dharmowijoyo, 2022. "Daily Activity Space for Various Generations in the Yogyakarta Metropolitan Area," Sustainability, MDPI, vol. 14(20), pages 1-24, October.
    18. Zhan, Zilin & Guo, Yuanyuan & Noland, Robert B. & He, Sylvia Y. & Wang, Yacan, 2023. "Analysis of links between dockless bikeshare and metro trips in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    19. Yanyan Chen & Zheng Zhang & Tianwen Liang, 2019. "Assessing Urban Travel Patterns: An Analysis of Traffic Analysis Zone-Based Mobility Patterns," Sustainability, MDPI, vol. 11(19), pages 1-15, October.
    20. Zhanhong Cheng & Martin Trépanier & Lijun Sun, 2021. "Probabilistic model for destination inference and travel pattern mining from smart card data," Transportation, Springer, vol. 48(4), pages 2035-2053, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:50:y:2023:i:1:p:198-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.