IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v402y2014icp330-343.html
   My bibliography  Save this article

The impact of network characteristics on the diffusion of innovations

Author

Listed:
  • Peres, Renana

Abstract

This paper studies the influence of network topology on the speed and reach of new product diffusion. While previous research has focused on comparing network types, this paper explores explicitly the relationship between topology and measurements of diffusion effectiveness. We study simultaneously the effect of three network metrics: the average degree, the relative degree of social hubs (i.e., the ratio of the average degree of highly-connected individuals to the average degree of the entire population), and the clustering coefficient. A novel network-generation procedure based on random graphs with a planted partition is used to generate 160 networks with a wide range of values for these topological metrics. Using an agent-based model, we simulate diffusion on these networks and check the dependence of the net present value (NPV) of the number of adopters over time on the network metrics. We find that the average degree and the relative degree of social hubs have a positive influence on diffusion. This result emphasizes the importance of high network connectivity and strong hubs. The clustering coefficient has a negative impact on diffusion, a finding that contributes to the ongoing controversy on the benefits and disadvantages of transitivity. These results hold for both monopolistic and duopolistic markets, and were also tested on a sample of 12 real networks.

Suggested Citation

  • Peres, Renana, 2014. "The impact of network characteristics on the diffusion of innovations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 330-343.
  • Handle: RePEc:eee:phsmap:v:402:y:2014:i:c:p:330-343
    DOI: 10.1016/j.physa.2014.02.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114000946
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.02.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. E. J. Newman & D. J. Watts, 1999. "Scaling and Percolation in the Small-World Network Model," Working Papers 99-05-034, Santa Fe Institute.
    2. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    3. Schinckus, C., 2013. "Between complexity of modelling and modelling of complexity: An essay on econophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3654-3665.
    4. Deng, Lei & Liu, Yun & Xiong, Fei, 2013. "An opinion diffusion model with clustered early adopters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3546-3554.
    5. A. Barrat & M. Weigt, 2000. "On the properties of small-world network models," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 13(3), pages 547-560, February.
    6. Jacob Goldenberg & Oded Lowengart & Daniel Shapira, 2009. "Zooming In: Self-Emergence of Movements in New Product Growth," Marketing Science, INFORMS, vol. 28(2), pages 274-292, 03-04.
    7. Uchida, Makoto & Shirayama, Susumu, 2008. "Influence of a network structure on the network effect in the communication service market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5303-5310.
    8. Laciana, Carlos E. & Rovere, Santiago L., 2011. "Ising-like agent-based technology diffusion model: Adoption patterns vs. seeding strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1139-1149.
    9. Duncan J. Watts & Peter Sheridan Dodds, 2007. "Influentials, Networks, and Public Opinion Formation," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 34(4), pages 441-458, May.
    10. Matthew O. Jackson & Brian W. Rogers, 2007. "Meeting Strangers and Friends of Friends: How Random Are Social Networks?," American Economic Review, American Economic Association, vol. 97(3), pages 890-915, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muller, Eitan & Peres, Renana, 2019. "The effect of social networks structure on innovation performance: A review and directions for research," International Journal of Research in Marketing, Elsevier, vol. 36(1), pages 3-19.
    2. Francesco Pasimeni & Tommaso Ciarli, 2018. "Diffusion of Shared Goods in Consumer Coalitions. An Agent-Based Model," SPRU Working Paper Series 2018-24, SPRU - Science Policy Research Unit, University of Sussex Business School.
    3. Bodo, Peter, 2016. "MADness in the method: On the volatility and irregularity of technology diffusion," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 2-11.
    4. Xiong, Hang & Payne, Diane & Kinsella, Stephen, 2016. "Peer effects in the diffusion of innovations: Theory and simulation," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 63(C), pages 1-13.
    5. Hüseyin İkizler, 2019. "Contagion of network products in small-world networks," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(4), pages 789-809, December.
    6. Ebbes, Peter & Huang, Zan & Rangaswamy, Arvind, 2016. "Sampling designs for recovering local and global characteristics of social networks," International Journal of Research in Marketing, Elsevier, vol. 33(3), pages 578-599.
    7. Cordelia Kreft & Mario Angst & Robert Huber & Robert Finger, 2023. "Farmers’ social networks and regional spillover effects in agricultural climate change mitigation," Climatic Change, Springer, vol. 176(2), pages 1-21, February.
    8. Guseo, Renato & Schuster, Reinhard, 2021. "Modelling dynamic market potential: Identifying hidden automata networks in the diffusion of pharmaceutical drugs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    9. Hang Xiong & Puqing Wang & Georgiy Bobashev, 2018. "Multiple peer effects in the diffusion of innovations on social networks: a simulation study," Journal of Innovation and Entrepreneurship, Springer, vol. 7(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muller, Eitan & Peres, Renana, 2019. "The effect of social networks structure on innovation performance: A review and directions for research," International Journal of Research in Marketing, Elsevier, vol. 36(1), pages 3-19.
    2. Goldenberg, Jacob & Libai, Barak & Muller, Eitan, 2010. "The chilling effects of network externalities," International Journal of Research in Marketing, Elsevier, vol. 27(1), pages 4-15.
    3. Jeehong Kim & Wonchang Hur, 2013. "Diffusion of competing innovations in influence networks," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(1), pages 109-124, April.
    4. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    5. Piotr Przybyła & Katarzyna Sznajd-Weron & Rafał Weron, 2014. "Diffusion Of Innovation Within An Agent-Based Model: Spinsons, Independence And Advertising," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 17(01), pages 1-22.
    6. Teck-Hua Ho & Shan Li & So-Eun Park & Zuo-Jun Max Shen, 2012. "Customer Influence Value and Purchase Acceleration in New Product Diffusion," Marketing Science, INFORMS, vol. 31(2), pages 236-256, March.
    7. Ding, Fei & Liu, Yun, 2009. "A decision theoretical approach for diffusion promotion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3572-3580.
    8. Claus, Bart & Geyskens, Kelly & Millet, Kobe & Dewitte, Siegfried, 2012. "The referral backfire effect: The identity-threatening nature of referral failure," International Journal of Research in Marketing, Elsevier, vol. 29(4), pages 370-379.
    9. Xenikos, D.G. & Constantoudis, V., 2023. "Weibull dynamics and power-law diffusion of epidemics in small world 2D networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    10. Amini, Mehdi & Wakolbinger, Tina & Racer, Michael & Nejad, Mohammad G., 2012. "Alternative supply chain production–sales policies for new product diffusion: An agent-based modeling and simulation approach," European Journal of Operational Research, Elsevier, vol. 216(2), pages 301-311.
    11. Laciana, Carlos E. & Rovere, Santiago L. & Podestá, Guillermo P., 2013. "Exploring associations between micro-level models of innovation diffusion and emerging macro-level adoption patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1873-1884.
    12. Qingliang Wang & Fred Miao & Giri Kumar Tayi & En Xie, 2019. "What makes online content viral? The contingent effects of hub users versus non–hub users on social media platforms," Journal of the Academy of Marketing Science, Springer, vol. 47(6), pages 1005-1026, November.
    13. Giovanni Pegoretti & Francesco Rentocchini & Giuseppe Vittucci Marzetti, 2012. "An agent-based model of innovation diffusion: network structure and coexistence under different information regimes," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 7(2), pages 145-165, October.
    14. Hema Yoganarasimhan, 2012. "Impact of social network structure on content propagation: A study using YouTube data," Quantitative Marketing and Economics (QME), Springer, vol. 10(1), pages 111-150, March.
    15. Neilson, William & Wichmann, Bruno, 2014. "Social networks and non-market valuations," Journal of Environmental Economics and Management, Elsevier, vol. 67(2), pages 155-170.
    16. Paolo Zeppini & Koen Frenken, 2015. "Networks, Percolation, and Demand," Department of Economics Working Papers 38/15, University of Bath, Department of Economics.
    17. Guseo, Renato & Guidolin, Mariangela, 2010. "Cellular Automata with network incubation in information technology diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(12), pages 2422-2433.
    18. Desmarchelier, Benoît & Fang, Eddy S., 2016. "National culture and innovation diffusion. Exploratory insights from agent-based modeling," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 121-128.
    19. Liye Ma & Ramayya Krishnan & Alan L. Montgomery, 2015. "Latent Homophily or Social Influence? An Empirical Analysis of Purchase Within a Social Network," Management Science, INFORMS, vol. 61(2), pages 454-473, February.
    20. Sebastian Schneider & Frank Huber, 2022. "You paid what!? Understanding price-related word-of-mouth and price perception among opinion leaders and innovators," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 21(1), pages 64-80, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:402:y:2014:i:c:p:330-343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.