IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v13y2000i3p547-560.html
   My bibliography  Save this article

On the properties of small-world network models

Author

Listed:
  • A. Barrat
  • M. Weigt

Abstract

No abstract is available for this item.

Suggested Citation

  • A. Barrat & M. Weigt, 2000. "On the properties of small-world network models," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 13(3), pages 547-560, February.
  • Handle: RePEc:spr:eurphb:v:13:y:2000:i:3:p:547-560
    DOI: 10.1007/s100510050067
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s100510050067
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panchenko, Valentyn & Gerasymchuk, Sergiy & Pavlov, Oleg V., 2013. "Asset price dynamics with heterogeneous beliefs and local network interactions," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2623-2642.
    2. Li, Chunguang, 2009. "Memorizing morph patterns in small-world neuronal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(2), pages 240-246.
    3. Robert Boyer & Denis Boyer & Gilles Laferte, 2007. "La connexion des réseaux comme facteur de changement institutionnel : l'exemple des vins de Bourgogne," PSE Working Papers halshs-00587708, HAL.
    4. Marr, Carsten & Hütt, Marc-Thorsten, 2005. "Topology regulates pattern formation capacity of binary cellular automata on graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 641-662.
    5. Comellas, Francesc & Miralles, Alicia, 2009. "Modeling complex networks with self-similar outerplanar unclustered graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(11), pages 2227-2233.
    6. Tsonis, Anastasios A. & Swanson, Kyle L. & Wang, Geli, 2008. "Estimating the clustering coefficient in scale-free networks on lattices with local spatial correlation structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5287-5294.
    7. Peres, Renana, 2014. "The impact of network characteristics on the diffusion of innovations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 330-343.
    8. Pollner, Péter & Palla, Gergely & Vicsek, Tamás, 2010. "Clustering of tag-induced subgraphs in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5887-5894.
    9. Dassisti, M. & Carnimeo, L., 2013. "A small-world methodology of analysis of interchange energy-networks: The European behaviour in the economical crisis," Energy Policy, Elsevier, vol. 63(C), pages 887-899.
    10. Pemantle, Robin & Skyrms, Brian, 2004. "Time to absorption in discounted reinforcement models," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 1-12, January.
    11. Argollo de Menezes, M & Moukarzel, C.F & Penna, T.J.P, 2001. "Geometric phase-transition on systems with sparse long-range connections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(1), pages 132-139.
    12. María Pereda & Daniele Vilone, 2017. "Social Pressure and Environmental Effects on Networks: A Path to Cooperation," Games, MDPI, Open Access Journal, vol. 8(1), pages 1-13, January.
    13. Wang, Pei & Xu, Shuang, 2017. "Spectral coarse grained controllability of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 168-176.
    14. Cristopher Moore & M. E. J. Newman, 2000. "Exact Solution of Site and Bond Percolation on Small-World Networks," Working Papers 00-01-007, Santa Fe Institute.
    15. Holme, Petter, 2007. "Scale-free networks with a large- to hypersmall-world transition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 315-322.
    16. M. E. J. Newman & C. Moore & D. J. Watts, 1999. "Mean-Field Solution of the Small-World Network Model," Working Papers 99-09-066, Santa Fe Institute.
    17. Wang, Xingyuan & Zhao, Tianfang & Qin, Xiaomeng, 2016. "Model of epidemic control based on quarantine and message delivery," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 168-178.
    18. Prettejohn, Brenton J. & Berryman, Matthew J. & McDonnell, Mark D., 2013. "A model of the effects of authority on consensus formation in adaptive networks: Impact on network topology and robustness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 857-868.
    19. Bu, Zhan & Xia, Zhengyou & Wang, Jiandong & Zhang, Chengcui, 2013. "A last updating evolution model for online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2240-2247.
    20. Steven Silver & Phillip Cowans, 2009. "Stocks of information in personal consumption: a network model with non-rival borrowing and content overlap," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 4(2), pages 115-134, November.
    21. Robert Boyer & Denis Boyer & Gilles Laferte, 2007. "La connexion des réseaux comme facteur de changement institutionnel : l'exemple des vins de Bourgogne," Working Papers halshs-00587708, HAL.
    22. repec:spr:scient:v:99:y:2014:i:3:d:10.1007_s11192-013-1209-z is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:13:y:2000:i:3:p:547-560. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.