IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Scalable Inference of Customer Similarities from Interactions Data Using Dirichlet Processes

  • Michael Braun

    ()

    (MIT Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

  • André Bonfrer

    ()

    (School of Management, Marketing and International Business, Australian National University, Canberra, Australian Capital Territory 0200, Australia)

Under the sociological theory of homophily, people who are similar to one another are more likely to interact with one another. Marketers often have access to data on interactions among customers from which, with homophily as a guiding principle, inferences could be made about the underlying similarities. However, larger networks face a quadratic explosion in the number of potential interactions that need to be modeled. This scalability problem renders probability models of social interactions computationally infeasible for all but the smallest networks. In this paper, we develop a probabilistic framework for modeling customer interactions that is both grounded in the theory of homophily and is flexible enough to account for random variation in who interacts with whom. In particular, we present a novel Bayesian nonparametric approach, using Dirichlet processes, to moderate the scalability problems that marketing researchers encounter when working with networked data. We find that this framework is a powerful way to draw insights into latent similarities of customers, and we discuss how marketers can apply these insights to segmentation and targeting activities.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://dx.doi.org/10.1287/mksc.1110.0640
Download Restriction: no

Article provided by INFORMS in its journal Marketing Science.

Volume (Year): 30 (2011)
Issue (Month): 3 (05-06)
Pages: 513-531

as
in new window

Handle: RePEc:inm:ormksc:v:30:y:2011:i:3:p:513-531
Contact details of provider: Postal:
7240 Parkway Drive, Suite 300, Hanover, MD 21076 USA

Phone: +1-443-757-3500
Fax: 443-757-3515
Web page: http://www.informs.org/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Bruce G. S. Hardie & Peter S. Fader & Robert Zeithammer, 2003. "Forecasting new product trial in a controlled test market environment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(5), pages 391-410.
  2. Donald G. Morrison & David C. Schmittlein, 1981. "Predicting Future Random Events Based on Past Performance," Management Science, INFORMS, vol. 27(9), pages 1006-1023, September.
  3. Sungjoon Nam & Puneet Manchanda & Pradeep K. Chintagunta, 2010. "The Effect of Signal Quality and Contiguous Word of Mouth on Customer Acquisition for a Video-on-Demand Service," Marketing Science, INFORMS, vol. 29(4), pages 690-700, 07-08.
  4. Reingen, Peter H, et al, 1984. " Brand Congruence in Interpersonal Relations: A Social Network Analysis," Journal of Consumer Research, Oxford University Press, vol. 11(3), pages 771-83, December.
  5. Hunter, David R. & Goodreau, Steven M. & Handcock, Mark S., 2008. "Goodness of Fit of Social Network Models," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 248-258, March.
  6. Peter D. Hoff, 2005. "Bilinear Mixed-Effects Models for Dyadic Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 286-295, March.
  7. K. R. Narayanan, 1954. "Freedom in Modern Society," India Quarterly: A Journal of International Affairs, , vol. 10(4), pages 376-381, October.
  8. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model-based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354.
  9. Park, C Whan & Lessig, V Parker, 1977. " Students and Housewives: Differences in Susceptibility to Reference Group Influence," Journal of Consumer Research, Oxford University Press, vol. 4(2), pages 102-10, Se.
  10. Bearden, William O & Etzel, Michael J, 1982. " Reference Group Influence on Product and Brand Purchase Decisions," Journal of Consumer Research, Oxford University Press, vol. 9(2), pages 183-94, September.
  11. Eric T. Bradlow & David C. Schmittlein, 2000. "The Little Engines That Could: Modeling the Performance of World Wide Web Search Engines," Marketing Science, INFORMS, vol. 19(1), pages 43-62, June.
  12. Gatignon, Hubert & Robertson, Thomas S, 1985. " A Propositional Inventory for New Diffusion Research," Journal of Consumer Research, Oxford University Press, vol. 11(4), pages 849-67, March.
  13. David Godes & Dina Mayzlin, 2009. "Firm-Created Word-of-Mouth Communication: Evidence from a Field Test," Marketing Science, INFORMS, vol. 28(4), pages 721-739, 07-08.
  14. Marshall Van Alstyne & Erik Brynjolfsson, 2005. "Global Village or Cyber-Balkans? Modeling and Measuring the Integration of Electronic Communities," Management Science, INFORMS, vol. 51(6), pages 851-868, June.
  15. Jan Kratzer & Christopher Lettl, 2009. "Distinctive Roles of Lead Users and Opinion Leaders in the Social Networks of Schoolchildren," Journal of Consumer Research, Oxford University Press, vol. 36(4), pages 646-659, December.
  16. Morrison, Donald G & Schmittlein, David C, 1988. "Generalizing the NBD Model for Customer Purchases: What Are the Implications and Is It Worth the Effort?," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(2), pages 145-59, April.
  17. George A. Akerlof, 1997. "Social Distance and Social Decisions," Econometrica, Econometric Society, vol. 65(5), pages 1005-1028, September.
  18. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
  19. Leo Katz, 1953. "A new status index derived from sociometric analysis," Psychometrika, Springer;The Psychometric Society, vol. 18(1), pages 39-43, March.
  20. Raghuram Iyengar & Christophe Van den Bulte & Thomas W. Valente, 2011. "Opinion Leadership and Social Contagion in New Product Diffusion," Marketing Science, INFORMS, vol. 30(2), pages 195-212, 03-04.
  21. Duncan J. Watts & Peter Sheridan Dodds, 2007. "Influentials, Networks, and Public Opinion Formation," Journal of Consumer Research, Oxford University Press, vol. 34(4), pages 441-458, 05.
  22. Morrison, Donald G & Schmittlein, David C, 1988. "Generalizing the NBD Model for Customer Purchases: What Are the Implications and Is It Worth the Effort? Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(2), pages 165-66, April.
  23. Brown, Jacqueline Johnson & Reingen, Peter H, 1987. " Social Ties and Word-of-Mouth Referral Behavior," Journal of Consumer Research, Oxford University Press, vol. 14(3), pages 350-62, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:30:y:2011:i:3:p:513-531. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.