IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v110y2015i512p1684-1695.html
   My bibliography  Save this article

Latent Surface Models for Networks Using Aggregated Relational Data

Author

Listed:
  • Tyler H. McCormick
  • Tian Zheng

Abstract

Despite increased interest across a range of scientific applications in modeling and understanding social network structure, collecting complete network data remains logistically and financially challenging, especially in the social sciences. This article introduces a latent surface representation of social network structure for partially observed network data. We derive a multivariate measure of expected (latent) distance between an observed actor and unobserved actors with given features. We also draw novel parallels between our work and dependent data in spatial and ecological statistics. We demonstrate the contribution of our model using a random digit-dial telephone survey and a multiyear prospective study of the relationship between network structure and the spread of infectious disease. The model proposed here is related to previous network models which represents high-dimensional structure through a projection to a low-dimensional latent geometric surface-encoding dependence as distance in the space. We develop a latent surface model for cases when complete network data are unavailable. We focus specifically on aggregated relational data (ARD) which measure network structure indirectly by asking respondents how many connections they have with members of a certain subpopulation (e.g., How many individuals do you know who are HIV positive?) and are easily added to existing surveys. Instead of conditioning on the (latent) distance between two members of the network, the latent surface model for ARD conditions on the expected distance between a survey respondent and the center of a subpopulation on a latent manifold surface. A spherical latent surface and angular distance across the sphere’s surface facilitate tractable computation of this expectation. This model estimates relative homogeneity between groups in the population and variation in the propensity for interaction between respondents and group members. The model also estimates features of groups which are difficult to reach using standard surveys (e.g., the homeless). Supplementary materials for this article are available online.

Suggested Citation

  • Tyler H. McCormick & Tian Zheng, 2015. "Latent Surface Models for Networks Using Aggregated Relational Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1684-1695, December.
  • Handle: RePEc:taf:jnlasa:v:110:y:2015:i:512:p:1684-1695
    DOI: 10.1080/01621459.2014.991395
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2014.991395
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2014.991395?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hoff P.D. & Raftery A.E. & Handcock M.S., 2002. "Latent Space Approaches to Social Network Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1090-1098, December.
    2. Michael Braun & André Bonfrer, 2011. "Scalable Inference of Customer Similarities from Interactions Data Using Dirichlet Processes," Marketing Science, INFORMS, vol. 30(3), pages 513-531, 05-06.
    3. Martina Morris, 1993. "Epidemiology and Social Networks:," Sociological Methods & Research, , vol. 22(1), pages 99-126, August.
    4. McCormick, Tyler H. & Salganik, Matthew J. & Zheng, Tian, 2010. "How Many People Do You Know?: Efficiently Estimating Personal Network Size," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 59-70.
    5. A. Mooney, Jennifer & Helms, Peter J. & Jolliffe, Ian T., 2003. "Fitting mixtures of von Mises distributions: a case study involving sudden infant death syndrome," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 505-513, January.
    6. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    7. Klovdahl, A.S. & Potterat, J.J. & Woodhouse, D.E. & Muth, J.B. & Muth, S.Q. & Darrow, W.W., 1994. "Social networks and infectious disease: The Colorado Springs study," Social Science & Medicine, Elsevier, vol. 38(1), pages 79-88, January.
    8. Peter D. Hoff, 2005. "Bilinear Mixed-Effects Models for Dyadic Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 286-295, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chih‐Sheng Hsieh & Lung‐Fei Lee & Vincent Boucher, 2020. "Specification and estimation of network formation and network interaction models with the exponential probability distribution," Quantitative Economics, Econometric Society, vol. 11(4), pages 1349-1390, November.
    2. Arun G. Chandrasekhar & Horacio Larreguy & Juan Pablo Xandri, 2020. "Testing Models of Social Learning on Networks: Evidence From Two Experiments," Econometrica, Econometric Society, vol. 88(1), pages 1-32, January.
    3. Hossein Alidaee & Eric Auerbach & Michael P. Leung, 2020. "Recovering Network Structure from Aggregated Relational Data using Penalized Regression," Papers 2001.06052, arXiv.org.
    4. Roy, Arkaprava & Sarkar, Abhra, 2023. "Bayesian semiparametric multivariate density deconvolution via stochastic rotation of replicates," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    5. Owen G. Ward & Jing Wu & Tian Zheng & Anna L. Smith & James P. Curley, 2022. "Network Hawkes process models for exploring latent hierarchy in social animal interactions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1402-1426, November.
    6. Victor Sellemi, 2022. "Risk in Network Economies," Papers 2208.01467, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yingda Lu & Kinshuk Jerath & Param Vir Singh, 2013. "The Emergence of Opinion Leaders in a Networked Online Community: A Dyadic Model with Time Dynamics and a Heuristic for Fast Estimation," Management Science, INFORMS, vol. 59(8), pages 1783-1799, August.
    2. Chen, Mingli & Fernández-Val, Iván & Weidner, Martin, 2021. "Nonlinear factor models for network and panel data," Journal of Econometrics, Elsevier, vol. 220(2), pages 296-324.
    3. Sudhir Voleti & Praveen K. Kopalle & Pulak Ghosh, 2015. "An Interproduct Competition Model Incorporating Branding Hierarchy and Product Similarities Using Store-Level Data," Management Science, INFORMS, vol. 61(11), pages 2720-2738, November.
    4. Adrian E. Raftery, 2017. "Comment: Extending the Latent Position Model for Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1531-1534, October.
    5. Michael Braun & André Bonfrer, 2011. "Scalable Inference of Customer Similarities from Interactions Data Using Dirichlet Processes," Marketing Science, INFORMS, vol. 30(3), pages 513-531, 05-06.
    6. Daniele Durante & David B. Dunson & Joshua T. Vogelstein, 2017. "Nonparametric Bayes Modeling of Populations of Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1516-1530, October.
    7. Sosa, Juan & Betancourt, Brenda, 2022. "A latent space model for multilayer network data," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    8. Samrachana Adhikari & Beau Dabbs, 2018. "Social Network Analysis in R: A Software Review," Journal of Educational and Behavioral Statistics, , vol. 43(2), pages 225-253, April.
    9. Samrachana Adhikari & Tracy Sweet & Brian Junker, 2021. "Analysis of longitudinal advice‐seeking networks following implementation of high stakes testing," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1475-1500, October.
    10. Áureo de Paula, 2015. "Econometrics of network models," CeMMAP working papers CWP52/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Ick Hoon Jin & Minjeong Jeon, 2019. "A Doubly Latent Space Joint Model for Local Item and Person Dependence in the Analysis of Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 236-260, March.
    12. Eric A. Vance & Elizabeth A. Archie & Cynthia J. Moss, 2009. "Social networks in African elephants," Computational and Mathematical Organization Theory, Springer, vol. 15(4), pages 273-293, December.
    13. repec:hal:wpspec:info:hdl:2441/dpido2upv86tqc7td18fd2mna is not listed on IDEAS
    14. Arun G. Chandrasekhar & Paul Goldsmith-Pinkham & Matthew O. Jackson & Samuel Thau, 2021. "Interacting regional policies in containing a disease," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 118(19), pages 2021520118-, May.
    15. Irene Crimaldi & Michela Del Vicario & Greg Morrison & Walter Quattrociocchi & Massimo Riccaboni, 2015. "Homophily and Triadic Closure in Evolving Social Networks," Working Papers 3/2015, IMT School for Advanced Studies Lucca, revised May 2015.
    16. Koen Jochmans, 2018. "Semiparametric Analysis of Network Formation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 705-713, October.
    17. Patacchini, Eleonora & Hsieh, Chih-Sheng & Lin, Xu, 2019. "Social Interaction Methods," CEPR Discussion Papers 14141, C.E.P.R. Discussion Papers.
    18. Amanda M. Y. Chu & Thomas W. C. Chan & Mike K. P. So & Wing-Keung Wong, 2021. "Dynamic Network Analysis of COVID-19 with a Latent Pandemic Space Model," IJERPH, MDPI, vol. 18(6), pages 1-22, March.
    19. Peter D. Hoff, 2009. "Multiplicative latent factor models for description and prediction of social networks," Computational and Mathematical Organization Theory, Springer, vol. 15(4), pages 261-272, December.
    20. Ahelegbey, Daniel Felix, 2015. "The Econometrics of Bayesian Graphical Models: A Review With Financial Application," MPRA Paper 92634, University Library of Munich, Germany, revised 25 Apr 2016.
    21. Chih‐Sheng Hsieh & Hans van Kippersluis, 2018. "Smoking initiation: Peers and personality," Quantitative Economics, Econometric Society, vol. 9(2), pages 825-863, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:110:y:2015:i:512:p:1684-1695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.