IDEAS home Printed from https://ideas.repec.org/a/nas/journl/v118y2021pe2021520118.html
   My bibliography  Save this article

Interacting regional policies in containing a disease

Author

Listed:
  • Arun G. Chandrasekhar

    (Department of Economics, Stanford University, Stanford, CA 94305; Abdul Latif Jameel Poverty Action Lab (J-PAL), Cambridge, MA 02142; National Bureau of Economic Research (NBER), Cambridge, MA 02138)

  • Paul Goldsmith-Pinkham

    (Yale School of Management, Yale University, New Haven, CT 06511)

  • Matthew O. Jackson

    (Department of Economics, Stanford University, Stanford, CA 94305; Santa Fe Institute, Santa Fe, NM 87501)

  • Samuel Thau

    (Applied Mathematics, Harvard University, Cambridge, MA 02138)

Abstract

Regional quarantine policies, in which a portion of a population surrounding infections is locked down, are an important tool to contain disease. However, jurisdictional governments—such as cities, counties, states, and countries—act with minimal coordination across borders. We show that a regional quarantine policy’s effectiveness depends on whether 1) the network of interactions satisfies a growth balance condition, 2) infections have a short delay in detection, and 3) the government has control over and knowledge of the necessary parts of the network (no leakage of behaviors). As these conditions generally fail to be satisfied, especially when interactions cross borders, we show that substantial improvements are possible if governments are outward looking and proactive: triggering quarantines in reaction to neighbors’ infection rates, in some cases even before infections are detected internally. We also show that even a few lax governments—those that wait for nontrivial internal infection rates before quarantining—impose substantial costs on the whole system. Our results illustrate the importance of understanding contagion across policy borders and offer a starting point in designing proactive policies for decentralized jurisdictions.

Suggested Citation

  • Arun G. Chandrasekhar & Paul Goldsmith-Pinkham & Matthew O. Jackson & Samuel Thau, 2021. "Interacting regional policies in containing a disease," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 118(19), pages 2021520118-, May.
  • Handle: RePEc:nas:journl:v:118:y:2021:p:e2021520118
    as

    Download full text from publisher

    File URL: http://www.pnas.org/content/118/19/e2021520118.full
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lori Beaman & Ariel BenYishay & Jeremy Magruder & Ahmed Mushfiq Mobarak, 2021. "Can Network Theory-Based Targeting Increase Technology Adoption?," American Economic Review, American Economic Association, vol. 111(6), pages 1918-1943, June.
    2. Hoff P.D. & Raftery A.E. & Handcock M.S., 2002. "Latent Space Approaches to Social Network Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1090-1098, December.
    3. Hortaçsu, Ali & Liu, Jiarui & Schwieg, Timothy, 2021. "Estimating the fraction of unreported infections in epidemics with a known epicenter: An application to COVID-19," Journal of Econometrics, Elsevier, vol. 220(1), pages 106-129.
    4. McCormick, Tyler H. & Salganik, Matthew J. & Zheng, Tian, 2010. "How Many People Do You Know?: Efficiently Estimating Personal Network Size," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 59-70.
    5. Ali Hortaçsu & Jiarui Liu & Timothy Schwieg, 2020. "Estimating the Fraction of Unreported Infections in Epidemics with a Known Epicenter: An Application to COVID-19," Working Papers 2020-37, Becker Friedman Institute for Research In Economics.
    6. Abhijit Banerjee & Marcella Alsan & Emily Breza & Arun G. Chandrasekhar & Abhijit Chowdhury & Esther Duflo & Paul Goldsmith-Pinkham & Benjamin A. Olken, 2020. "Messages on COVID-19 Prevention in India Increased Symptoms Reporting and Adherence to Preventive Behaviors Among 25 Million Recipients with Similar Effects on Non-recipient Members of Their Communiti," NBER Working Papers 27496, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julliard, Christian & Shi, Ran & Yuan, Kathy, 2023. "The spread of COVID-19 in London: Network effects and optimal lockdowns," Journal of Econometrics, Elsevier, vol. 235(2), pages 2125-2154.
    2. Coven, Joshua & Gupta, Arpit & Yao, Iris, 2023. "JUE Insight: Urban flight seeded the COVID-19 pandemic across the United States," Journal of Urban Economics, Elsevier, vol. 133(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel L. Millimet & Christopher F. Parmeter, 2022. "COVID‐19 severity: A new approach to quantifying global cases and deaths," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1178-1215, July.
    2. Rehse, Dominik & Tremöhlen, Felix, 2020. "Fostering participation in digital public health interventions: The case of digital contact tracing," ZEW Discussion Papers 20-076, ZEW - Leibniz Centre for European Economic Research.
    3. David Argente & Chang-Tai Hsieh & Munseob Lee, 2022. "The Cost of Privacy: Welfare Effects of the Disclosure of COVID-19 Cases," The Review of Economics and Statistics, MIT Press, vol. 104(1), pages 176-186, March.
    4. Gourieroux, C. & Jasiak, J., 2023. "Time varying Markov process with partially observed aggregate data: An application to coronavirus," Journal of Econometrics, Elsevier, vol. 232(1), pages 35-51.
    5. Fernández-Villaverde, Jesús & Jones, Charles I., 2022. "Estimating and simulating a SIRD Model of COVID-19 for many countries, states, and cities," Journal of Economic Dynamics and Control, Elsevier, vol. 140(C).
    6. Cem Cakmakli & Yasin Simsek, 2020. "Bridging the COVID-19 Data and the Epidemiological Model using Time Varying Parameter SIRD Model," Papers 2007.02726, arXiv.org, revised Feb 2021.
    7. Richard Gearhart & Lyudmyla Sonchak-Ardan & Nyakundi Michieka, 2022. "The efficiency of COVID cases to COVID policies: a robust conditional approach," Empirical Economics, Springer, vol. 63(6), pages 2903-2948, December.
    8. Jordan J Bird & Chloe M Barnes & Cristiano Premebida & Anikó Ekárt & Diego R Faria, 2020. "Country-level pandemic risk and preparedness classification based on COVID-19 data: A machine learning approach," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-20, October.
    9. David Berger & Kyle Herkenhoff & Chengdai Huang & Simon Mongey, 2022. "Testing and Reopening in an SEIR Model," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 43, pages 1-21, January.
    10. Kent A. Smetters, 2020. "Stay-at-home orders and second waves: a graphical exposition," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 45(2), pages 94-103, September.
    11. Ho, Thong Quoc & Nie, Zihan & Alpizar, Francisco & Carlsson, Fredrik & Nam, Pham Khanh, 2022. "Celebrity endorsement in promoting pro-environmental behavior," Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 68-86.
    12. Tyler H. McCormick & Tian Zheng, 2015. "Latent Surface Models for Networks Using Aggregated Relational Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1684-1695, December.
    13. Leonardo Melosi & Matthias Rottner, 2020. "Pandemic Recessions and Contact Tracing," Working Paper Series WP-2020-31, Federal Reserve Bank of Chicago.
    14. Titan Alon & Minki Kim & David Lagakos & Mitchell VanVuren, 2020. "How Should Policy Responses to the COVID-19 Pandemic Differ in the Developing World?," NBER Working Papers 27273, National Bureau of Economic Research, Inc.
    15. Eric Auerbach, 2019. "Testing for Differences in Stochastic Network Structure," Papers 1903.11117, arXiv.org, revised Nov 2020.
    16. Acedański, Jan, 2021. "Optimal lockdown policy during the election period," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 102-117.
    17. Islam, Asad & Kusnadi, Gita & Rezki, Jahen & Sim, Armand & van Empel, Giovanni & Vlassopoulos, Michael & Zenou, Yves, 2024. "Addressing vaccine hesitancy using local ambassadors: A randomized controlled trial in Indonesia," European Economic Review, Elsevier, vol. 163(C).
    18. Cátia Batista & Marcel Fafchamps & Pedro C Vicente, 2022. "Keep It Simple: A Field Experiment on Information Sharing among Strangers [Changing Saving and Investment Behavior: The Impact of Financial Literacy Training and Reminders on Micro-Businesses]," The World Bank Economic Review, World Bank, vol. 36(4), pages 857-888.
    19. Robert S. Pindyck, 2020. "COVID-19 and the Welfare Effects of Reducing Contagion," NBER Working Papers 27121, National Bureau of Economic Research, Inc.
    20. Toulis, Panos, 2021. "Estimation of Covid-19 prevalence from serology tests: A partial identification approach," Journal of Econometrics, Elsevier, vol. 220(1), pages 193-213.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nas:journl:v:118:y:2021:p:e2021520118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Eric Cain (email available below). General contact details of provider: http://www.pnas.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.