IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/24912.html

Can Network Theory-based Targeting Increase Technology Adoption?

Author

Listed:
  • Lori Beaman
  • Ariel BenYishay
  • Jeremy Magruder
  • Ahmed Mushfiq Mobarak

Abstract

In order to induce farmers to adopt a productive new agricultural technology, we apply simple and complex contagion diffusion models on rich social network data from 200 villages in Malawi to identify seed farmers to target and train on the new technology. A randomized controlled trial compares these theory-driven network targeting approaches to simpler strategies that either rely on a government extension worker or an easily measurable proxy for the social network (geographic distance between households) to identify seed farmers. Our results indicate that technology diffusion is characterized by a complex contagion learning environment in which most farmers need to learn from multiple people before they adopt themselves. Network theory based targeting can out-perform traditional approaches to extension, and we identify methods to realize these gains at low cost to policymakers.

Suggested Citation

  • Lori Beaman & Ariel BenYishay & Jeremy Magruder & Ahmed Mushfiq Mobarak, 2018. "Can Network Theory-based Targeting Increase Technology Adoption?," NBER Working Papers 24912, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:24912
    Note: DEV EEE
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w24912.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    JEL classification:

    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:24912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.