IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i1p194-207.html
   My bibliography  Save this article

Modeling electricity spot prices using mean-reverting multifractal processes

Author

Listed:
  • Rypdal, Martin
  • Løvsletten, Ola

Abstract

We discuss stochastic modeling of volatility persistence and anti-correlations in electricity spot prices, and for this purpose we present two mean-reverting versions of the multifractal random walk (MRW). In the first model the anti-correlations are modeled in the same way as in an Ornstein–Uhlenbeck process, i.e. via a drift (damping) term, and in the second model the anti-correlations are included by letting the innovations in the MRW model be fractional Gaussian noise with H<1/2. For both models we present approximate maximum likelihood methods, and we apply these methods to estimate the parameters for the spot prices in the Nordic electricity market. The maximum likelihood estimates show that electricity spot prices are characterized by scaling exponents that are significantly different from the corresponding exponents in stock markets, confirming the exceptional nature of the electricity market. In order to compare the damped MRW model with the fractional MRW model we use ensemble simulations and wavelet-based variograms, and we observe that certain features of the spot prices are better described by the damped MRW model. The characteristic correlation time is estimated to approximately half a year.

Suggested Citation

  • Rypdal, Martin & Løvsletten, Ola, 2013. "Modeling electricity spot prices using mean-reverting multifractal processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 194-207.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:1:p:194-207
    DOI: 10.1016/j.physa.2012.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112007972
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.08.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ola L{o}vsletten & Martin Rypdal, 2011. "Approximated maximum likelihood estimation in multifractal random walks," Papers 1112.0105, arXiv.org, revised Feb 2012.
    2. Erzgräber, Hartmut & Strozzi, Fernanda & Zaldívar, José-Manuel & Touchette, Hugo & Gutiérrez, Eugénio & Arrowsmith, David K., 2008. "Time series analysis and long range correlations of Nordic spot electricity market data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6567-6574.
    3. Torstein Bye & Einar Hope, 2005. "Deregulation of electricity markets : The Norwegian experience," Discussion Papers 433, Statistics Norway, Research Department.
    4. Norouzzadeh, P. & Dullaert, W. & Rahmani, B., 2007. "Anti-correlation and multifractal features of Spain electricity spot market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 333-342.
    5. Weron, Rafal & Przybyłowicz, Beata, 2000. "Hurst analysis of electricity price dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 283(3), pages 462-468.
    6. Erlwein, Christina & Benth, Fred Espen & Mamon, Rogemar, 2010. "HMM filtering and parameter estimation of an electricity spot price model," Energy Economics, Elsevier, vol. 32(5), pages 1034-1043, September.
    7. Simonsen, Ingve, 2003. "Measuring anti-correlations in the nordic electricity spot market by wavelets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 322(C), pages 597-606.
    8. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    9. Calvet, Laurent & Fisher, Adlai, 2001. "Forecasting multifractal volatility," Journal of Econometrics, Elsevier, vol. 105(1), pages 27-58, November.
    10. Laurent E. Calvet, 2004. "How to Forecast Long-Run Volatility: Regime Switching and the Estimation of Multifractal Processes," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 49-83.
    11. Ingve Simonsen, 2001. "Measuring Anti-Correlations in the Nordic Electricity Spot Market by Wavelets," Papers cond-mat/0108033, arXiv.org, revised Apr 2003.
    12. Bacry, E. & Kozhemyak, A. & Muzy, Jean-Francois, 2008. "Continuous cascade models for asset returns," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 156-199, January.
    13. Malo, Pekka, 2009. "Modeling electricity spot and futures price dependence: A multifrequency approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(22), pages 4763-4779.
    14. Weron, Rafal, 2000. "Energy price risk management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 285(1), pages 127-134.
    15. McLeod, A. Ian & Yu, Hao & Krougly, Zinovi L., 2007. "Algorithms for Linear Time Series Analysis: With R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 23(i05).
    16. Simonsen, Ingve, 2005. "Volatility of power markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 10-20.
    17. Fred Espen Benth & Jan Kallsen & Thilo Meyer-Brandis, 2007. "A Non-Gaussian Ornstein-Uhlenbeck Process for Electricity Spot Price Modeling and Derivatives Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(2), pages 153-169.
    18. Lobato, Ignacio N & Velasco, Carlos, 2000. "Long Memory in Stock-Market Trading Volume," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(4), pages 410-427, October.
    19. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601.
    20. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    21. Emmanuel Bacry & Alexey Kozhemyak & J.-F. Muzy, 2008. "Continuous cascade models for asset returns," Post-Print hal-00604449, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
    2. Bennedsen, Mikkel, 2017. "A rough multi-factor model of electricity spot prices," Energy Economics, Elsevier, vol. 63(C), pages 301-313.
    3. Mikkel Bennedsen, 2015. "Rough electricity: a new fractal multi-factor model of electricity spot prices," CREATES Research Papers 2015-42, Department of Economics and Business Economics, Aarhus University.
    4. Rypdal, Martin & Sirnes, Espen & Løvsletten, Ola & Rypdal, Kristoffer, 2013. "Assessing market uncertainty by means of a time-varying intermittency parameter for asset price fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(16), pages 3335-3343.
    5. Avci-Surucu, Ezgi & Aydogan, A. Kursat & Akgul, Doganbey, 2016. "Bidding structure, market efficiency and persistence in a multi-time tariff setting," Energy Economics, Elsevier, vol. 54(C), pages 77-87.
    6. Fan, Qingju, 2016. "Asymmetric multiscale detrended fluctuation analysis of California electricity spot price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 252-260.
    7. Sun, Qi & Xu, Weijun & Xiao, Weilin, 2013. "An empirical estimation for mean-reverting coal prices with long memory," Economic Modelling, Elsevier, vol. 33(C), pages 174-181.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Rypdal & Ola L{o}vsletten, 2012. "Modeling electricity spot prices using mean-reverting multifractal processes," Papers 1201.6137, arXiv.org.
    2. Segnon, Mawuli & Lux, Thomas, 2013. "Multifractal models in finance: Their origin, properties, and applications," Kiel Working Papers 1860, Kiel Institute for the World Economy (IfW Kiel).
    3. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    4. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601.
    5. Antonio Doria, Francisco, 2011. "J.B. Rosser Jr. , Handbook of Research on Complexity, Edward Elgar, Cheltenham, UK--Northampton, MA, USA (2009) 436 + viii pp., index, ISBN 978 1 84542 089 5 (cased)," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 196-204, April.
    6. Lux, Thomas, 2008. "Applications of statistical physics in finance and economics," Kiel Working Papers 1425, Kiel Institute for the World Economy (IfW Kiel).
    7. Thomas Lux, 2009. "Applications of Statistical Physics in Finance and Economics," Chapters, in: J. Barkley Rosser Jr. (ed.), Handbook of Research on Complexity, chapter 9, Edward Elgar Publishing.
    8. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    9. Ladislav KRISTOUFEK & Petra LUNACKOVA, 2013. "Long-term Memory in Electricity Prices: Czech Market Evidence," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(5), pages 407-424, November.
    10. Kracík, Jiří & Lavička, Hynek, 2016. "Fluctuation analysis of high frequency electric power load in the Czech Republic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 951-961.
    11. Malo, Pekka, 2009. "Modeling electricity spot and futures price dependence: A multifrequency approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(22), pages 4763-4779.
    12. Erzgräber, Hartmut & Strozzi, Fernanda & Zaldívar, José-Manuel & Touchette, Hugo & Gutiérrez, Eugénio & Arrowsmith, David K., 2008. "Time series analysis and long range correlations of Nordic spot electricity market data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6567-6574.
    13. Sattarhoff, Cristina & Lux, Thomas, 2021. "Forecasting the Variability of Stock Index Returns with the Multifractal Random Walk Model for Realized Volatilities," Economics Working Papers 2021-02, Christian-Albrechts-University of Kiel, Department of Economics.
    14. M. Rypdal & O. L{o}vsletten, 2011. "Multifractal modeling of short-term interest rates," Papers 1111.5265, arXiv.org.
    15. Grobys, Klaus, 2023. "A multifractal model of asset (in)variances," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 85(C).
    16. Marossy, Zita, 2011. "A villamos energia áralakulásának egy új modellje [A new model for price movement in electric power]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(3), pages 253-274.
    17. Weron, Rafal, 2008. "Market price of risk implied by Asian-style electricity options and futures," Energy Economics, Elsevier, vol. 30(3), pages 1098-1115, May.
    18. Avci-Surucu, Ezgi & Aydogan, A. Kursat & Akgul, Doganbey, 2016. "Bidding structure, market efficiency and persistence in a multi-time tariff setting," Energy Economics, Elsevier, vol. 54(C), pages 77-87.
    19. Alvarez-Ramirez, J. & Escarela-Perez, R. & Espinosa-Perez, G. & Urrea, R., 2009. "Dynamics of electricity market correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(11), pages 2173-2188.
    20. Michel Culot & Valérie Goffin & Steve Lawford & Sébastien de Meten & Yves Smeers, 2013. "Practical stochastic modelling of electricity prices," Post-Print hal-01021603, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:1:p:194-207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.