IDEAS home Printed from
   My bibliography  Save this article

Interactive learning in 2×2 normal form games by neural network agents


  • Spiliopoulos, Leonidas


This paper models the learning process of populations of randomly rematched tabula rasa neural network (NN) agents playing randomly generated 2×2 normal form games of all strategic classes. This approach has greater external validity than the existing models in the literature, each of which is usually applicable to narrow subsets of classes of games (often a single game) and/or to fixed matching protocols. The learning prowess of NNs with hidden layers was impressive as they learned to play unique pure strategy equilibria with near certainty, adhered to principles of dominance and iterated dominance, and exhibited a preference for risk-dominant equilibria. In contrast, perceptron NNs were found to perform significantly worse than hidden layer NN agents and human subjects in experimental studies.

Suggested Citation

  • Spiliopoulos, Leonidas, 2012. "Interactive learning in 2×2 normal form games by neural network agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5557-5562.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:22:p:5557-5562 DOI: 10.1016/j.physa.2012.06.017

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    2. Itzhak Gilboa & David Schmeidler, 1995. "Case-Based Decision Theory," The Quarterly Journal of Economics, Oxford University Press, vol. 110(3), pages 605-639.
    3. Costa-Gomes, Miguel & Crawford, Vincent P & Broseta, Bruno, 2001. "Cognition and Behavior in Normal-Form Games: An Experimental Study," Econometrica, Econometric Society, vol. 69(5), pages 1193-1235, September.
    4. Sgroi, Daniel & Zizzo, Daniel J., 2007. "Neural networks and bounded rationality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 717-725.
    5. Fabrizio Germano, 2007. "Stochastic Evolution of Rules for Playing Finite Normal Form Games," Theory and Decision, Springer, vol. 62(4), pages 311-333, May.
    6. Cheung, Yin-Wong & Friedman, Daniel, 1997. "Individual Learning in Normal Form Games: Some Laboratory Results," Games and Economic Behavior, Elsevier, vol. 19(1), pages 46-76, April.
    7. Cabrales, Antonio & Garcia-Fontes, Walter & Motta, Massimo, 2000. "Risk dominance selects the leader: An experimental analysis," International Journal of Industrial Organization, Elsevier, vol. 18(1), pages 137-162, January.
    8. Straub, Paul G., 1995. "Risk dominance and coordination failures in static games," The Quarterly Review of Economics and Finance, Elsevier, vol. 35(4), pages 339-363.
    9. Tesfatsion, Leigh S., 2002. "Agent-Based Computational Economics: Growing Economies from the Bottom Up," Staff General Research Papers Archive 5075, Iowa State University, Department of Economics.
    10. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
    11. LiCalzi Marco, 1995. "Fictitious Play by Cases," Games and Economic Behavior, Elsevier, vol. 11(1), pages 64-89, October.
    12. Sgroi, Daniel & Zizzo, Daniel John, 2009. "Learning to play 3×3 games: Neural networks as bounded-rational players," Journal of Economic Behavior & Organization, Elsevier, vol. 69(1), pages 27-38, January.
    13. Selten, Reinhard, 1998. "Features of experimentally observed bounded rationality," European Economic Review, Elsevier, vol. 42(3-5), pages 413-436, May.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:22:p:5557-5562. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.