IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v54y2001i6p477-489.html
   My bibliography  Save this article

Sequential optimization of integrated climate change models

Author

Listed:
  • Janssen, Marco A.

Abstract

A sequential optimization approach is applied to optimize the behavior of a complex dynamical system. It sequentially solves a large set of mathematical equations and next optimizes the behavior of a reduced-system, fixing certain variables of the larger original problem. These two steps are repeated till convergence occurs. The approach is applied to the problem of identifying response strategies for climate change caused by antropogenic emissions of different trace gases. The convergence properties are analyzed for this example.

Suggested Citation

  • Janssen, Marco A., 2001. "Sequential optimization of integrated climate change models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 54(6), pages 477-489.
  • Handle: RePEc:eee:matcom:v:54:y:2001:i:6:p:477-489
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475400002780
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nordhaus, William D., 1993. "Rolling the 'DICE': an optimal transition path for controlling greenhouse gases," Resource and Energy Economics, Elsevier, vol. 15(1), pages 27-50, March.
    2. Janssen, Marco A., 1997. "Optimization of a non-linear dynamical system for global climate change," European Journal of Operational Research, Elsevier, vol. 99(2), pages 322-335, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johan Eyckmans & Michael Finus, 2006. "New roads to international environmental agreements: the case of global warming," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 7(4), pages 391-414, December.
    2. Richard S.J. Tol, 2003. "The Marginal Costs Of Carbon Dioxide Emissions: An Assessment Of The Uncertainties," Working Papers FNU-19, Research unit Sustainability and Global Change, Hamburg University, revised Apr 2003.
    3. Chan, Ying Tung & Zhao, Hong, 2023. "Optimal carbon tax rates in a dynamic stochastic general equilibrium model with a supply chain," Economic Modelling, Elsevier, vol. 119(C).
    4. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    5. Rogna, Marco & Vogt, Carla J., 2021. "Accounting for inequality aversion can justify the 2° C goal," Ruhr Economic Papers 925, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    6. Winkler, Harald & Baumert, Kevin & Blanchard, Odile & Burch, Sarah & Robinson, John, 2007. "What factors influence mitigative capacity?," Energy Policy, Elsevier, vol. 35(1), pages 692-703, January.
    7. Matteo Coronese & Davide Luzzati, 2022. "Economic impacts of natural hazards and complexity science: a critical review," LEM Papers Series 2022/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    8. Martin Whitby & W. Neil Adger, 1996. "Natural And Reproducible Capital And The Sustainability Of Land Use In The Uk," Journal of Agricultural Economics, Wiley Blackwell, vol. 47(1‐4), pages 50-65, January.
    9. Mark Kagan, 2012. "Climate Change Skepticism in the Face of Catastrophe," Tinbergen Institute Discussion Papers 12-112/VIII, Tinbergen Institute, revised 29 Sep 2014.
    10. Gregory Casey & Stephie Fried & Ethan Goode, 2023. "Projecting the Impact of Rising Temperatures: The Role of Macroeconomic Dynamics," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(3), pages 688-718, September.
    11. Matteo Fontana & Massimo Tavoni & Simone Vantini, 2020. "Global Sensitivity and Domain-Selective Testing for Functional-Valued Responses: An Application to Climate Economy Models," Papers 2006.13850, arXiv.org, revised Jan 2024.
    12. Anthoff, David & Rose, Steven K. & Tol, Richard S. J. & Waldhoff, Stephanie, 2011. "The Time Evolution of the Social Cost of Carbon: An Application of FUND," Papers WP405, Economic and Social Research Institute (ESRI).
    13. Adam Michael Bauer & Cristian Proistosescu & Gernot Wagner, 2023. "Carbon Dioxide as a Risky Asset," CESifo Working Paper Series 10278, CESifo.
    14. Paulo A.L.D. Nunes & Helen Ding & Sonja Teelucksingh, 2010. "European Forests and Carbon Sequestration Services: An Economic Assessment of Climate Change Impacts," Working Papers 2010.10, Fondazione Eni Enrico Mattei.
    15. Dominique Bureau, 2009. "Économie d’un accord global sur le climat : une introduction," Économie et Prévision, Programme National Persée, vol. 190(4), pages 1-19.
    16. Zhang, Hong & Jin, Gui & Zhang, Zhengyu, 2021. "Coupling system of carbon emission and social economy: A review," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    17. Diane Coyle & Mark Fabian & Eric Beinhocker & Tim Besley & Margaret Stevens, 2023. "Is it time to reboot welfare economics? Overview," Fiscal Studies, John Wiley & Sons, vol. 44(2), pages 109-121, June.
    18. Thierry Bréchet & Carmen Camacho & Vladimir Veliov, 2014. "Model predictive control, the economy, and the issue of global warming," Annals of Operations Research, Springer, vol. 220(1), pages 25-48, September.
    19. Ahlvik, Lassi & Iho, Antti, 2018. "Optimal geoengineering experiments," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 148-168.
    20. Richard S.J. Tol, 2021. "Estimates of the social cost of carbon have not changed over time," Working Paper Series 0821, Department of Economics, University of Sussex Business School.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:54:y:2001:i:6:p:477-489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.