IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v75y2018icp33-42.html
   My bibliography  Save this article

Potential impacts of agricultural land use on soil cover in response to bioenergy production in Canada

Author

Listed:
  • Liu, Jiangui
  • Huffman, Ted
  • Green, Melodie

Abstract

The introduction of a market for agricultural biomass to feed large-scale second generation bioenergy (cellulosic ethanol) or other bio-products has positive implications for food producers and bio-product industries but may impact soil quality. In order to assess the potential impact on Canada’s agricultural lands, we integrated land use and soil capability maps and land management information to introduce several scenarios of crop residue harvest rates and land use conversions. The implications for soil quality, as represented by soil cover, were assessed for each scenario. The results showed that average soil cover at the national scale would decrease by more than 1 day if 40% of annual crop residues (by mass) were harvested, but the negative impacts could be resolved by increased adoption of conservation tillage methods. Additional biomass could be produced by converting low quality agricultural land to perennial biomass crops, but this would result in increased intensity of food production on high quality land. The total area of high and low quality land within the agricultural region of Canada is roughly equal, and the amount of high quality land currently used for perennial crops is about the same as the amount of low quality land used for annual crops, and ‘balancing’ production with capability would result in a net increase in both food and biofuel feedstock, with little impact to soil quality. About 6.73 M ha of high quality land is covered by forest, shrub and grass, and conversion of this land to agricultural production would have a negative impact on soil quality. The study indicates considerable potential for production of both food and biofuel feedstock on Canada’s agricultural lands through careful land use planning. Our analysis using soil cover as an indicator of environmental sustainability also indicates that land use planning should be cautious to prevent soil degradation. Particularly, regional variability of land use and soil capability distribution requires region specific land use policy for sustainable biofuel feedstock production.

Suggested Citation

  • Liu, Jiangui & Huffman, Ted & Green, Melodie, 2018. "Potential impacts of agricultural land use on soil cover in response to bioenergy production in Canada," Land Use Policy, Elsevier, vol. 75(C), pages 33-42.
  • Handle: RePEc:eee:lauspo:v:75:y:2018:i:c:p:33-42
    DOI: 10.1016/j.landusepol.2018.03.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837717316046
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2018.03.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Danny G. Le Roy & Kurt K. Klein, 2012. "The Policy Objectives of a Biofuel Industry in Canada: An Assessment," Agriculture, MDPI, vol. 2(4), pages 1-16, December.
    2. Li, Xue & Mupondwa, Edmund & Panigrahi, Satya & Tabil, Lope & Sokhansanj, Shahab & Stumborg, Mark, 2012. "A review of agricultural crop residue supply in Canada for cellulosic ethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2954-2965.
    3. Liu, Tingting & Huffman, Ted & Kulshreshtha, Suren & McConkey, Brian & Du, Yuneng & Green, Melodie & Liu, Jiangui & Shang, Jiali & Geng, Xiaoyuan, 2017. "Bioenergy production on marginal land in Canada: Potential, economic feasibility, and greenhouse gas emissions impacts," Applied Energy, Elsevier, vol. 205(C), pages 477-485.
    4. Mitchell, Donald, 2008. "A note on rising food prices," Policy Research Working Paper Series 4682, The World Bank.
    5. Naik, S.N. & Goud, Vaibhav V. & Rout, Prasant K. & Dalai, Ajay K., 2010. "Production of first and second generation biofuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 578-597, February.
    6. Muth, D.J. & Bryden, K.M. & Nelson, R.G., 2013. "Sustainable agricultural residue removal for bioenergy: A spatially comprehensive US national assessment," Applied Energy, Elsevier, vol. 102(C), pages 403-417.
    7. Ilya Gelfand & Ritvik Sahajpal & Xuesong Zhang & R. César Izaurralde & Katherine L. Gross & G. Philip Robertson, 2013. "Sustainable bioenergy production from marginal lands in the US Midwest," Nature, Nature, vol. 493(7433), pages 514-517, January.
    8. Guo, Mingxin & Song, Weiping & Buhain, Jeremy, 2015. "Bioenergy and biofuels: History, status, and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 712-725.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Tingting & McConkey, Brian & Huffman, Ted & Smith, Stephen & MacGregor, Bob & Yemshanov, Denys & Kulshreshtha, Suren, 2014. "Potential and impacts of renewable energy production from agricultural biomass in Canada," Applied Energy, Elsevier, vol. 130(C), pages 222-229.
    2. Ujjayant Chakravorty & Marie‐Hélène Hubert & Beyza Ural Marchand, 2019. "Food for fuel: The effect of the US biofuel mandate on poverty in India," Quantitative Economics, Econometric Society, vol. 10(3), pages 1153-1193, July.
    3. Jha, Priyanka & Schmidt, Stefan, 2021. "State of biofuel development in sub-Saharan Africa: How far sustainable?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Adekunle, Ademola & Orsat, Valerie & Raghavan, Vijaya, 2016. "Lignocellulosic bioethanol: A review and design conceptualization study of production from cassava peels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 518-530.
    5. Murnaghan, Kitty, 2017. "A comprehensive evaluation of the EU's biofuel policy: From biofuels to agrofuels," IPE Working Papers 81/2017, Berlin School of Economics and Law, Institute for International Political Economy (IPE).
    6. Carriquiry, Miguel A. & Du, Xiaodong & Timilsina, Govinda R., 2011. "Second generation biofuels: Economics and policies," Energy Policy, Elsevier, vol. 39(7), pages 4222-4234, July.
    7. Perdue, James H. & Stanturf, John A. & Young, Timothy M. & Huang, Xia & Dougherty, Derek & Pigott, Michael & Guo, Zhimei, 2017. "Profitability potential for Pinus taeda L. (loblolly pine) short-rotation bioenergy plantings in the southern USA," Forest Policy and Economics, Elsevier, vol. 83(C), pages 146-155.
    8. Zabed, H. & Sahu, J.N. & Suely, A. & Boyce, A.N. & Faruq, G., 2017. "Bioethanol production from renewable sources: Current perspectives and technological progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 475-501.
    9. Saha, Mithun & Eckelman, Matthew J., 2015. "Geospatial assessment of potential bioenergy crop production on urban marginal land," Applied Energy, Elsevier, vol. 159(C), pages 540-547.
    10. Bardhan, Soubhik K. & Gupta, Shelaka & Gorman, M.E. & Haider, M. Ali, 2015. "Biorenewable chemicals: Feedstocks, technologies and the conflict with food production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 506-520.
    11. Festel, Gunter & Würmseher, Martin & Rammer, Christian & Boles, Eckhard & Bellof, Martin, 2013. "Modelling production cost scenarios for biofuels and fossil fuels in Europe," ZEW Discussion Papers 13-075, ZEW - Leibniz Centre for European Economic Research.
    12. Iye, Edward & Bilsborrow, Paul, 2013. "Cellulosic ethanol production from agricultural residues in Nigeria," Energy Policy, Elsevier, vol. 63(C), pages 207-214.
    13. Amir Behzad Bazrgar & Aeryn Ng & Brent Coleman & Muhammad Waseem Ashiq & Andrew Gordon & Naresh Thevathasan, 2020. "Long-Term Monitoring of Soil Carbon Sequestration in Woody and Herbaceous Bioenergy Crop Production Systems on Marginal Lands in Southern Ontario, Canada," Sustainability, MDPI, vol. 12(9), pages 1-16, May.
    14. Omojola Awogbemi & Daramy Vandi Von Kallon & Emmanuel Idoko Onuh & Victor Sunday Aigbodion, 2021. "An Overview of the Classification, Production and Utilization of Biofuels for Internal Combustion Engine Applications," Energies, MDPI, vol. 14(18), pages 1-43, September.
    15. Kosinkova, Jana & Doshi, Amar & Maire, Juliette & Ristovski, Zoran & Brown, Richard & Rainey, Thomas J., 2015. "Measuring the regional availability of biomass for biofuels and the potential for microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1271-1285.
    16. Holland, Robert A. & Scott, Kate & Hinton, Emma D. & Austen, Melanie C. & Barrett, John & Beaumont, Nicola & Blaber-Wegg, Tina & Brown, Gareth & Carter-Silk, Eleanor & Cazenave, Pierre & Eigenbrod, Fe, 2016. "Bridging the gap between energy and the environment," Energy Policy, Elsevier, vol. 92(C), pages 181-189.
    17. Fang, Yan Ru & Wu, Yi & Xie, Guang Hui, 2019. "Crop residue utilizations and potential for bioethanol production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    18. Azizi, Kolsoom & Keshavarz Moraveji, Mostafa & Abedini Najafabadi, Hamed, 2018. "A review on bio-fuel production from microalgal biomass by using pyrolysis method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3046-3059.
    19. Ben Zhang & Jie Yang & Yinxia Cao, 2021. "Assessing Potential Bioenergy Production on Urban Marginal Land in 20 Major Cities of China by the Use of Multi-View High-Resolution Remote Sensing Data," Sustainability, MDPI, vol. 13(13), pages 1-20, June.
    20. Usmani, Rahil Akhtar, 2020. "Potential for energy and biofuel from biomass in India," Renewable Energy, Elsevier, vol. 155(C), pages 921-930.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:75:y:2018:i:c:p:33-42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.