IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v71y2017icp475-501.html
   My bibliography  Save this article

Bioethanol production from renewable sources: Current perspectives and technological progress

Author

Listed:
  • Zabed, H.
  • Sahu, J.N.
  • Suely, A.
  • Boyce, A.N.
  • Faruq, G.

Abstract

Bioethanol is an attractive biofuel having potential for energy security and environmental safety over fossil fuels. To date, numerous biomass resources have been investigated for bioethanol production, which can broadly be classified into sugars, starch and lignocellulosic biomass. However, conversion of biomass into ethanol varies considerably depending on the nature of feedstock, primarily due to the variation in biochemical composition, and so, only a few feedstocks have been exploited commercially. In recent years, the conversion process of biomass has been improved significantly, even though most of these achievements are yet to be implemented in commercial facility. All the major steps in a typical conversion process, particularly fermentation of sugars that is the common step for all biomass, are greatly influenced by microorganisms. A traditional yeast, Saccharomyces cerevisiae, and a bacterial species, Zymomonas mobilis, are widely used in the ethanol fermentation technology. Many factors affect ethanol production process, and the final yield is directly associated with the optimum conditions of these attributes. This review paper presents an overview on the first and second generation bioethanol production with a particular attention to the potential of various biomass sources, technological approaches, role of microorganisms and factors affecting ethanol production process.

Suggested Citation

  • Zabed, H. & Sahu, J.N. & Suely, A. & Boyce, A.N. & Faruq, G., 2017. "Bioethanol production from renewable sources: Current perspectives and technological progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 475-501.
  • Handle: RePEc:eee:rensus:v:71:y:2017:i:c:p:475-501
    DOI: 10.1016/j.rser.2016.12.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116311339
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.12.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zabed, H. & Sahu, J.N. & Boyce, A.N. & Faruq, G., 2016. "Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 751-774.
    2. Morales, Marjorie & Quintero, Julián & Conejeros, Raúl & Aroca, Germán, 2015. "Life cycle assessment of lignocellulosic bioethanol: Environmental impacts and energy balance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1349-1361.
    3. Behera, Shuvashish & Mohanty, Rama Chandra & Ray, Ramesh Chandra, 2010. "Comparative study of bio-ethanol production from mahula (Madhuca latifolia L.) flowers by Saccharomyces cerevisiae and Zymomonas mobilis," Applied Energy, Elsevier, vol. 87(7), pages 2352-2355, July.
    4. Mishra, Abhishek & Sharma, Ajay K. & Sharma, Sumit & Bagai, Rashmi & Mathur, Anshu S. & Gupta, Ravi P. & Tuli, Deepak K., 2016. "Lignocellulosic ethanol production employing immobilized Saccharomyces cerevisiae in packed bed reactor," Renewable Energy, Elsevier, vol. 98(C), pages 57-63.
    5. Louhichi, Boulbaba & Belgaib, Jalel & benamor, Hedi & Hajji, Nejib, 2013. "Production of bio-ethanol from three varieties of dates," Renewable Energy, Elsevier, vol. 51(C), pages 170-174.
    6. Long, Xiao-Hua & Shao, Hong-Bo & Liu, Ling & Liu, Li-Ping & Liu, Zhao-Pu, 2016. "Jerusalem artichoke: A sustainable biomass feedstock for biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1382-1388.
    7. Quintero, J.A. & Montoya, M.I. & Sánchez, O.J. & Giraldo, O.H. & Cardona, C.A., 2008. "Fuel ethanol production from sugarcane and corn: Comparative analysis for a Colombian case," Energy, Elsevier, vol. 33(3), pages 385-399.
    8. Sindhu, Raveendran & Gnansounou, Edgard & Binod, Parameswaran & Pandey, Ashok, 2016. "Bioconversion of sugarcane crop residue for value added products – An overview," Renewable Energy, Elsevier, vol. 98(C), pages 203-215.
    9. Li, Shizhong & Li, Guangming & Zhang, Lei & Zhou, Zhixing & Han, Bing & Hou, Wenhui & Wang, Jingbing & Li, Tiancheng, 2013. "A demonstration study of ethanol production from sweet sorghum stems with advanced solid state fermentation technology," Applied Energy, Elsevier, vol. 102(C), pages 260-265.
    10. Naik, S.N. & Goud, Vaibhav V. & Rout, Prasant K. & Dalai, Ajay K., 2010. "Production of first and second generation biofuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 578-597, February.
    11. Bothast, Rodney J., 2005. "New Technologies In Biofuel Production," Agricultural Outlook Forum 2005 32873, United States Department of Agriculture, Agricultural Outlook Forum.
    12. Sarkar, Nibedita & Ghosh, Sumanta Kumar & Bannerjee, Satarupa & Aikat, Kaustav, 2012. "Bioethanol production from agricultural wastes: An overview," Renewable Energy, Elsevier, vol. 37(1), pages 19-27.
    13. Wang, Er-Qiang & Li, Shi-Zhong & Tao, Ling & Geng, Xin & Li, Tian-Cheng, 2010. "Modeling of rotating drum bioreactor for anaerobic solid-state fermentation," Applied Energy, Elsevier, vol. 87(9), pages 2839-2845, September.
    14. Shapouri, Hosein & Duffield, James A. & Wang, Michael Q., 2002. "The Energy Balance of Corn Ethanol: An Update," Agricultural Economic Reports 34075, United States Department of Agriculture, Economic Research Service.
    15. Daylan, B. & Ciliz, N., 2016. "Life cycle assessment and environmental life cycle costing analysis of lignocellulosic bioethanol as an alternative transportation fuel," Renewable Energy, Elsevier, vol. 89(C), pages 578-587.
    16. Chen, Hui & Venditti, Richard & Gonzalez, Ronalds & Phillips, Richard & Jameel, Hasan & Park, Sunkyu, 2014. "Economic evaluation of the conversion of industrial paper sludge to ethanol," Energy Economics, Elsevier, vol. 44(C), pages 281-290.
    17. Bayraktar, Hakan, 2005. "Experimental and theoretical investigation of using gasoline–ethanol blends in spark-ignition engines," Renewable Energy, Elsevier, vol. 30(11), pages 1733-1747.
    18. Velásquez-Arredondo, H.I. & Ruiz-Colorado, A.A. & De Oliveira, S., 2010. "Ethanol production process from banana fruit and its lignocellulosic residues: Energy analysis," Energy, Elsevier, vol. 35(7), pages 3081-3087.
    19. Lee, Wen-Shiang & Chen, I-Chu & Chang, Cheng-Hsiung & Yang, Shang-Shyng, 2012. "Bioethanol production from sweet potato by co-immobilization of saccharolytic molds and Saccharomyces cerevisiae," Renewable Energy, Elsevier, vol. 39(1), pages 216-222.
    20. Saxena, R.C. & Adhikari, D.K. & Goyal, H.B., 2009. "Biomass-based energy fuel through biochemical routes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 167-178, January.
    21. Soam, Shveta & Kumar, Ravindra & Gupta, Ravi P. & Sharma, Pankaj K. & Tuli, Deepak K. & Das, Biswapriya, 2015. "Life cycle assessment of fuel ethanol from sugarcane molasses in northern and western India and its impact on Indian biofuel programme," Energy, Elsevier, vol. 83(C), pages 307-315.
    22. Guo, Mingxin & Song, Weiping & Buhain, Jeremy, 2015. "Bioenergy and biofuels: History, status, and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 712-725.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ko, Chun-Han & Wang, Ya-Nang & Chang, Fang-Chih & Chen, Jia-Jie & Chen, Wen-Hua & Hwang, Wen-Song, 2012. "Potentials of lignocellulosic bioethanols produced from hardwood in Taiwan," Energy, Elsevier, vol. 44(1), pages 329-334.
    2. Thangavelu, Saravana Kannan & Ahmed, Abu Saleh & Ani, Farid Nasir, 2016. "Review on bioethanol as alternative fuel for spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 820-835.
    3. Karagoz, Pınar & Bill, Roslyn M. & Ozkan, Melek, 2019. "Lignocellulosic ethanol production: Evaluation of new approaches, cell immobilization and reactor configurations," Renewable Energy, Elsevier, vol. 143(C), pages 741-752.
    4. Zhao, Yan & Damgaard, Anders & Xu, Yingjie & Liu, Shan & Christensen, Thomas H., 2019. "Bioethanol from corn stover – Global warming footprint of alternative biotechnologies," Applied Energy, Elsevier, vol. 247(C), pages 237-253.
    5. Joshi, Girdhar & Pandey, Jitendra K. & Rana, Sravendra & Rawat, Devendra S., 2017. "Challenges and opportunities for the application of biofuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 850-866.
    6. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    7. Qian Kang & Tianwei Tan, 2016. "Exergy and CO 2 Analyses as Key Tools for the Evaluation of Bio-Ethanol Production," Sustainability, MDPI, vol. 8(1), pages 1-11, January.
    8. Ishtiaq Ahmed & Muhammad Anjum Zia & Huma Afzal & Shaheez Ahmed & Muhammad Ahmad & Zain Akram & Farooq Sher & Hafiz M. N. Iqbal, 2021. "Socio-Economic and Environmental Impacts of Biomass Valorisation: A Strategic Drive for Sustainable Bioeconomy," Sustainability, MDPI, vol. 13(8), pages 1-32, April.
    9. Balali, Yasaman & Stegen, Sascha, 2021. "Review of energy storage systems for vehicles based on technology, environmental impacts, and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Alessandra Cesaro & Vincenzo Belgiorno, 2015. "Combined Biogas and Bioethanol Production: Opportunities and Challenges for Industrial Application," Energies, MDPI, vol. 8(8), pages 1-24, August.
    11. Geraili, A. & Sharma, P. & Romagnoli, J.A., 2014. "Technology analysis of integrated biorefineries through process simulation and hybrid optimization," Energy, Elsevier, vol. 73(C), pages 145-159.
    12. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    13. Taghizadeh-Alisaraei, Ahmad & Motevali, Ali & Ghobadian, Barat, 2019. "Ethanol production from date wastes: Adapted technologies, challenges, and global potential," Renewable Energy, Elsevier, vol. 143(C), pages 1094-1110.
    14. Renzi, Massimiliano & Bietresato, Marco & Mazzetto, Fabrizio, 2016. "An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends," Energy, Elsevier, vol. 115(P1), pages 1069-1080.
    15. Ko, Ja Kyong & Lee, Jae Hoon & Jung, Je Hyeong & Lee, Sun-Mi, 2020. "Recent advances and future directions in plant and yeast engineering to improve lignocellulosic biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    16. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    17. García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago & Rückert Roso, Vinícius & Duarte Souza Alvarenga Santos, Nathália, 2020. "Potential of bio-ethanol in different advanced combustion modes for hybrid passenger vehicles," Renewable Energy, Elsevier, vol. 150(C), pages 58-77.
    18. Faubert, Patrick & Barnabé, Simon & Bouchard, Sylvie & Côté, Richard & Villeneuve, Claude, 2016. "Pulp and paper mill sludge management practices: What are the challenges to assess the impacts on greenhouse gas emissions?," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 107-133.
    19. Robus, Charles L.L. & Gottumukkala, Lalitha Devi & van Rensburg, Eugéne & Görgens, Johann F., 2016. "Feasible process development and techno-economic evaluation of paper sludge to bioethanol conversion: South African paper mills scenario," Renewable Energy, Elsevier, vol. 92(C), pages 333-345.
    20. Alberto Benato & Alarico Macor, 2019. "Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions," Energies, MDPI, vol. 12(6), pages 1-31, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:71:y:2017:i:c:p:475-501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.